PUBLICATION

The Genetic Programs Specifying Kolmer-Agduhr Interneurons

Authors
Yang, L., Wang, F., Strähle, U.
ID
ZDB-PUB-201120-68
Date
2020
Source
Frontiers in neuroscience   14: 577879 (Review)
Registered Authors
Strähle, Uwe
Keywords
GABAergic interneuron, Kolmer–Agduhr cells, cerebrospinal fluid-contacting neurons, transcription factors, transcriptional regulatory network
MeSH Terms
none
PubMed
33162880 Full text @ Front. Neurosci.
Abstract
Kolmer-Agduhr (KA) cells are a subgroup of interneurons positioned adjacent to the neurocoele with cilia on the apical surface protruding into the central canal of the spinal cord. Although KA cells were identified almost a century ago, their development and functions are only beginning to be unfolded. Recent studies have revealed the characteristics of KA cells in greater detail, including their spatial distribution, the timing of their differentiation, and their specification via extrinsic signaling and a unique combination of transcription factors in zebrafish and mouse. Cell lineage-tracing experiments have demonstrated that two subsets of KA cells, named KA' and KA" cells, differentiate from motoneuronal progenitors and floor-plate precursors, respectively, in both zebrafish and mouse. Although KA' and KA" cells originate from different progenitors/precursors, they each share a common set of transcription factors. Intriguingly, the combination of transcription factors that promote the acquisition of KA' cell characteristics differs from those that promote a KA" cell identity. In addition, KA' and KA" cells exhibit separable neuronal targets and differential responses to bending of the spinal cord. In this review, we summarize what is currently known about the genetic programs defining the identities of KA' and KA" cell identities. We then discuss how these two subgroups of KA cells are genetically specified.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping