PUBLICATION

A new form of inherited thrombocytopenia caused by loss-of-function mutations in PTPRJ

Authors
Marconi, C., Di Buduo, C.A., LeVine, K., Barozzi, S., Faleschini, M., Bozzi, V., Palombo, F., McKinstry, S., Lassandro, G., Giordano, P., Noris, P., Balduini, C.L., Savoia, A., Balduini, A., Pippucci, T., Seri, M., Katsanis, N., Pecci, A.
ID
ZDB-PUB-181230-1
Date
2018
Source
Blood   133(12): 1346-1357 (Journal)
Registered Authors
Katsanis, Nicholas
Keywords
none
MeSH Terms
  • Adolescent
  • Adult
  • Animals
  • Blood Platelets/metabolism
  • Blood Platelets/pathology*
  • CRISPR-Cas Systems
  • Child
  • Female
  • Follow-Up Studies
  • Genetic Predisposition to Disease*
  • Hematopoiesis
  • Humans
  • Male
  • Megakaryocytes/metabolism
  • Megakaryocytes/pathology*
  • Middle Aged
  • Mutation*
  • Pedigree
  • Prognosis
  • Receptor-Like Protein Tyrosine Phosphatases, Class 3/antagonists & inhibitors
  • Receptor-Like Protein Tyrosine Phosphatases, Class 3/genetics
  • Thrombocytopenia/etiology
  • Thrombocytopenia/genetics
  • Thrombocytopenia/pathology*
  • Zebrafish
PubMed
30591527 Full text @ Blood
Abstract
Inherited thrombocytopenias (ITs) are a heterogeneous group of disorders characterized by low platelet count that may result in bleeding tendency. Despite progress being made in defining the genetic causes of ITs, nearly 50% of patients with familial thrombocytopenia are affected with forms of unknown origin. Here, through exome sequencing of two siblings with autosomal recessive thrombocytopenia, we identified two biallelic loss-of-function variants in PTPRJ This gene encodes for a receptor-like protein tyrosine phosphatase, PTPRJ (or CD148), expressed abundantly in platelets and megakaryocytes. Consistent with the predicted effects of the variants, both probands have an almost complete loss of PTPRJ both at the level of mRNA and protein. To investigate the pathogenic role of PTPRJ deficiency in hematopoiesis in vivo, we carried out CRISPR/Cas9-mediated ablation of ptprja (the ortholog of human PTPRJ) in zebrafish, which induced a significantly decreased number of CD41+ thrombocytes in vivo. Moreover, megakaryocytes of our patients showed impaired maturation and profound defects in SDF1-driven migration and formation of proplatelets in vitro. Silencing of PTPRJ in a human megakaryocytic cell line reproduced the functional defects observed in patients' megakaryocytes. The disorder caused by PTPRJ mutations presented as a non-syndromic thrombocytopenia characterized by spontaneous bleeding, small-sized platelets, and impaired platelet responses to the GPVI agonists collagen and convulxin. These platelet functional defects could be attributed to reduced activation of Src family kinases. Taken together, our data identify a new form of IT and highlight a hitherto unknown, fundamental role of PTPRJ in platelet biogenesis.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping