PUBLICATION

Acute exposure of zebrafish embryo (Danio rerio) to flutolanil reveals its developmental mechanism of toxicity via disrupting the thyroid system and metabolism

Authors
Teng, M., Zhu, W., Wang, D., Yan, J., Qi, S., Song, M., Wang, C.
ID
ZDB-PUB-180817-8
Date
2018
Source
Environmental pollution (Barking, Essex : 1987)   242: 1157-1165 (Journal)
Registered Authors
Keywords
Flutolanil, Metabolomics, Thyroid endocrine disruption, Zebrafish embryo
MeSH Terms
  • Anilides/toxicity*
  • Animals
  • Embryo, Nonmammalian/drug effects*
  • Embryo, Nonmammalian/physiology
  • Embryonic Development/drug effects
  • Endocrine Disruptors/toxicity*
  • Fungicides, Industrial/metabolism
  • Fungicides, Industrial/toxicity*
  • Thyroid Gland/metabolism
  • Toxicity Tests, Acute
  • Zebrafish/embryology
  • Zebrafish/metabolism
PubMed
30114598 Full text @ Environ. Pollut.
Abstract
Flutolanil, an amide fungicide, had been detected frequently in aquatic environments; it is thus potentially a great risk to aquatic organisms and human health. Therefore, we investigated the developmental toxicity and the potential mechanism of thyroid endocrine disruption induced by flutolanil based on 1H NMR metabolomics analysis using a zebrafish model. Hatching of zebrafish embryo exposed to flutolanil was inhibited at 72 hpf (hour post-fertilization) and survival and body length at 96 hpf. In addition, increased teratogenic effects on embryos were observed, including pericardial edema, spine deformation, and tail malformation. Furthermore, flutolanil induced slower heartbeat and larger pericardial area in the treated groups than control group. Transcription levels of TRH, TSHR, TPO, Dio1, TRα, and UGT1ab were significantly altered after flutolanil exposure. Metabolomics analysis further indicated that flutolanil induced alterations of energy, amino acids, nucleotide, lipids, and fatty acid metabolism. Our study also indicated that flutolanil exposure led to alterations of endogenous metabolites, which induced the thyroid endocrine disruption in zebrafish. Ultimately, embryonic developmental toxicity was caused by flutolanil.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping