PUBLICATION

The developmental effects of low-level procymidone towards zebrafish embryos and involved mechanism

Authors
Wu, Y., Zuo, Z., Chen, M., Zhou, Y., Yang, Q., Zhuang, S., Wang, C.
ID
ZDB-PUB-180609-4
Date
2018
Source
Chemosphere   193: 928-935 (Journal)
Registered Authors
Keywords
ATPase activity, Embryonic development, Fish, Fungicide, Mechanism, mRNA level
MeSH Terms
  • Animals
  • Bridged Bicyclo Compounds/chemistry*
  • Zebrafish/embryology*
PubMed
29874768 Full text @ Chemosphere
Abstract
Procymidone (PCM), a dicarboximide fungicide, is widely used in agriculture to control plant diseases. In the present study, zebrafish embryos were exposed to PCM at 0, 10, 100 and 1000 ng/L for 72 h, the development and cardiac functioning of larvae were observed and determined. The results showed that hatching rate was significantly decreased in the 1000 ng/L treatment, and pericardial edema rate and spine curvature rate were significantly increased in the 100 and 1000 ng/L groups. The PCM-treated larvae exhibited an increased heart rate as well as arrhythmia, and shortened low jaw. The transcription levels of cardiac development-related genes tbx5, nkx2.5, tnnt2, gata4, myh6, myl7, cdh2, ryr2 were altered, which might be responsible for the cardiac developmental and functioning defects in the larvae. The deformation in bone development might be related with the impaired transcription levels of ihh, shh, bmp2b, bmp4, gh, igf1, sox9, gli2. The activities of Na+/K+-ATPase and Ca2+-ATPase were significantly inhibited by 100 ng/L and 1000 ng/L PCM exposure, which might be a cause for the occurrence of pericardial edema and skeletal deformation. The results of this study will be helpful in evaluating the potential threat of PCM to fish population in the aquatic environment.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping