PUBLICATION
            Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish
- Authors
 - Janjuha, S., Singh, S.P., Tsakmaki, A., Mousavy-Gharavy, N., Murawala, P., Konantz, J., Birke, S., Hodson, D.J., Rutter, G., Bewick, G., Ninov, N.N.
 - ID
 - ZDB-PUB-180407-3
 - Date
 - 2018
 - Source
 - eLIFE 7: (Journal)
 - Registered Authors
 - Ninov, Nikolay, Singh, Sumeet Pal
 - Keywords
 - cell biology, zebrafish
 - Datasets
 - GEO:GSE106938
 - MeSH Terms
 - 
    
        
        
            
                
- Inflammation Mediators/metabolism*
 - Cell Proliferation*
 - Gene Expression Profiling
 - NF-kappa B/genetics
 - NF-kappa B/metabolism*
 - Signal Transduction
 - Cells, Cultured
 - Animals, Genetically Modified
 - Insulin-Secreting Cells/immunology
 - Insulin-Secreting Cells/metabolism
 - Insulin-Secreting Cells/pathology*
 - Transcriptional Activation
 - Inflammation/immunology
 - Inflammation/metabolism
 - Inflammation/pathology*
 - Animals
 - Single-Cell Analysis
 - Zebrafish/immunology
 - Zebrafish/physiology*
 - Aging*
 
 - PubMed
 - 29624168 Full text @ Elife
 
            Citation
        
        
            Janjuha, S., Singh, S.P., Tsakmaki, A., Mousavy-Gharavy, N., Murawala, P., Konantz, J., Birke, S., Hodson, D.J., Rutter, G., Bewick, G., Ninov, N.N. (2018) Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish. eLIFE. 7.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                The pancreatic islet, a cellular community harboring the insulin-producing beta-cells, is known to undergo age-related alterations. However, only a handful of signals associated with aging have been identified. By comparing beta-cells from younger and older zebrafish, here we show that the aging islets exhibit signs of chronic inflammation. These include recruitment of tnfα-expressing macrophages and the activation of NF-kB signaling in beta-cells. Using a transgenic reporter, we show that NF-kB activity is undetectable in juvenile beta-cells, whereas cells from older fish exhibit heterogeneous NF-kB activity. We link this heterogeneity to differences in gene expression and proliferation. Beta-cells with high NF-kB signaling proliferate significantly less compared to their neighbors with low activity. The NF-kB signalinghi cells also exhibit premature upregulation of socs2, an age-related gene that inhibits beta-cell proliferation. Together, our results show that NF-kB activity marks the asynchronous decline in beta-cell proliferation with advancing age.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping