A statistical approach to identify, monitor, and manage incomplete curated data sets

Howe, D.G.
BMC Bioinformatics   19: 110 (Journal)
Registered Authors
Howe, Doug
Curation, Danio rerio, Gene expression, Machine learning, Zebrafish
MeSH Terms
  • Animals
  • Animals, Genetically Modified
  • Data Mining*
  • Databases, Genetic*
  • Gene Expression Regulation
  • Molecular Sequence Annotation
  • Regression Analysis
  • Reproducibility of Results
  • Statistics as Topic*
  • Zebrafish/genetics*
29609549 Full text @ BMC Bioinformatics
Many biological knowledge bases gather data through expert curation of published literature. High data volume, selective partial curation, delays in access, and publication of data prior to the ability to curate it can result in incomplete curation of published data. Knowing which data sets are incomplete and how incomplete they are remains a challenge. Awareness that a data set may be incomplete is important for proper interpretation, to avoiding flawed hypothesis generation, and can justify further exploration of published literature for additional relevant data. Computational methods to assess data set completeness are needed. One such method is presented here.
In this work, a multivariate linear regression model was used to identify genes in the Zebrafish Information Network (ZFIN) Database having incomplete curated gene expression data sets. Starting with 36,655 gene records from ZFIN, data aggregation, cleansing, and filtering reduced the set to 9870 gene records suitable for training and testing the model to predict the number of expression experiments per gene. Feature engineering and selection identified the following predictive variables: the number of journal publications; the number of journal publications already attributed for gene expression annotation; the percent of journal publications already attributed for expression data; the gene symbol; and the number of transgenic constructs associated with each gene. Twenty-five percent of the gene records (2483 genes) were used to train the model. The remaining 7387 genes were used to test the model. One hundred and twenty-two and 165 of the 7387 tested genes were identified as missing expression annotations based on their residuals being outside the model lower or upper 95% confidence interval respectively. The model had precision of 0.97 and recall of 0.71 at the negative 95% confidence interval and precision of 0.76 and recall of 0.73 at the positive 95% confidence interval.
This method can be used to identify data sets that are incompletely curated, as demonstrated using the gene expression data set from ZFIN. This information can help both database resources and data consumers gauge when it may be useful to look further for published data to augment the existing expertly curated information.
Genes / Markers
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Engineered Foreign Genes