header logo image header logo text
Downloads Login
Research
General Information
ZIRC
ZFIN ID: ZDB-PUB-170223-3
Germline-specific dgcr8 knockout in zebrafish using a BACK approach
Liu, Y., Zhu, Z., Ho, I.H., Shi, Y., Xie, Y., Li, J., Zhang, Y., Chan, M.T., Cheng, C.H.
Date: 2017
Source: Cellular and molecular life sciences : CMLS   74(13): 2503–2511 (Journal)
Registered Authors: Zhang, Yong
Keywords: Crispr-cas9, Germ layer specification, Maternal-zygotic transition, Small regulatory RNAs
MeSH Terms:
  • Animals
  • Base Sequence
  • Chromosomes, Artificial, Bacterial/genetics*
  • Embryonic Development/genetics
  • Exons/genetics
  • Gene Deletion
  • Gene Expression Regulation, Developmental
  • Gene Knockout Techniques/methods*
  • Gene Targeting
  • Germ Cells/metabolism*
  • MicroRNAs/genetics
  • MicroRNAs/metabolism
  • Mutation/genetics
  • RNA Processing, Post-Transcriptional/genetics
  • Transcription Activator-Like Effector Nucleases/metabolism
  • Zebrafish/embryology
  • Zebrafish/genetics*
  • Zebrafish Proteins/genetics*
  • Zebrafish Proteins/metabolism
PubMed: 28224202 Full text @ Cell. Mol. Life Sci.
FIGURES
ABSTRACT
Zebrafish is an important model to study developmental biology and human diseases. However, an effective approach to achieve spatial and temporal gene knockout in zebrafish has not been well established. In this study, we have developed a new approach, namely bacterial artificial chromosome-rescue-based knockout (BACK), to achieve conditional gene knockout in zebrafish using the Cre/loxP system. We have successfully deleted the DiGeorge syndrome critical region gene 8 (dgcr8) in zebrafish germ line and demonstrated that the maternal-zygotic dgcr8 (MZdgcr8) embryos exhibit MZdicer-like phenotypes with morphological defects which could be rescued by miR-430, indicating that canonical microRNAs play critical role in early development. Our findings establish that Cre/loxP-mediated tissue-specific gene knockout could be achieved using this BACK strategy and that canonical microRNAs play important roles in early embryonic development in zebrafish.
ADDITIONAL INFORMATION