PUBLICATION
            Cell Electrical Impedance as a Novel Approach for Studies on Senescence Not Based on Biomarkers
- Authors
- Cha, J.J., Park, Y., Yun, J., Kim, H.W., Park, C.J., Kang, G., Jung, M., Pak, B., Jin, S.W., Lee, J.H.
- ID
- ZDB-PUB-161105-6
- Date
- 2016
- Source
- BioMed Research International 2016: 8484217 (Journal)
- Registered Authors
- Jin, Suk-Won
- Keywords
- none
- MeSH Terms
- 
    
        
        
            
                - Cell Membrane/metabolism
- Cell Membrane/physiology
- Electric Impedance
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Zebrafish/metabolism
- Zebrafish/physiology
- Biomarkers/metabolism*
- Cytoplasm/metabolism
- Cytoplasm/physiology
- Microelectrodes
- Cellular Senescence/physiology*
- Animals
- Dielectric Spectroscopy/methods*
 
- PubMed
- 27812531 Full text @ Biomed Res. Int.
            Citation
        
        
            Cha, J.J., Park, Y., Yun, J., Kim, H.W., Park, C.J., Kang, G., Jung, M., Pak, B., Jin, S.W., Lee, J.H. (2016) Cell Electrical Impedance as a Novel Approach for Studies on Senescence Not Based on Biomarkers. BioMed Research International. 2016:8484217.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Senescence of cardiac myocytes is frequently associated with heart diseases. To analyze senescence in cardiac myocytes, a number of biomarkers have been isolated. However, due to the complex nature of senescence, multiple markers are required for a single assay to accurately depict complex physiological changes associated with senescence. In single cells, changes in both cytoplasm and cell membrane during senescence can affect the changes in electrical impedance. Based on this phenomenon, we developed MEDoS, a novel microelectrochemical impedance spectroscopy for diagnosis of senescence, which allows us to precisely measure quantitative changes in electrical properties of aging cells. Using cardiac myocytes isolated from 3-, 6-, and 18-month-old isogenic zebrafish, we examined the efficacy of MEDoS and showed that MEDoS can identify discernible changes in electrical impedance. Taken together, our data demonstrated that electrical impedance in cells at different ages is distinct with quantitative values; these results were comparable with previously reported ones. Therefore, we propose that MEDoS be used as a new biomarker-independent methodology to obtain quantitative data on the biological senescence status of individual cells.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    