PUBLICATION

Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition

Authors
Bazzini, A.A., Del Viso, F., Moreno-Mateos, M.A., Johnstone, T.G., Vejnar, C.E., Qin, Y., Yao, J., Khokha, M.K., Giraldez, A.J.
ID
ZDB-PUB-160722-10
Date
2016
Source
The EMBO journal   35(19): 2087-2103 (Journal)
Registered Authors
Giraldez, Antonio, Vejnar, Charles
Keywords
codon optimality, decay, maternal‐to‐zygotic transition, translation, zebrafish
MeSH Terms
  • Animals
  • Codon*
  • Drosophila
  • Gene Expression Regulation*
  • Humans
  • Mice
  • Protein Biosynthesis*
  • RNA Stability*
  • RNA, Messenger/genetics*
  • Ribosomes/metabolism
  • Xenopus
  • Zebrafish
  • Zygote/growth & development*
PubMed
27436874 Full text @ EMBO J.
Abstract
Cellular transitions require dramatic changes in gene expression that are supported by regulated mRNA decay and new transcription. The maternal-to-zygotic transition is a conserved developmental progression during which thousands of maternal mRNAs are cleared by post-transcriptional mechanisms. Although some maternal mRNAs are targeted for degradation by microRNAs, this pathway does not fully explain mRNA clearance. We investigated how codon identity and translation affect mRNA stability during development and homeostasis. We show that the codon triplet contains translation-dependent regulatory information that influences transcript decay. Codon composition shapes maternal mRNA clearance during the maternal-to-zygotic transition in zebrafish, Xenopus, mouse, and Drosophila, and gene expression during homeostasis across human tissues. Some synonymous codons show consistent stabilizing or destabilizing effects, suggesting that amino acid composition influences mRNA stability. Codon composition affects both polyadenylation status and translation efficiency. Thus, the ribosome interprets two codes within the mRNA: the genetic code which specifies the amino acid sequence and a conserved "codon optimality code" that shapes mRNA stability and translation efficiency across vertebrates.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping