Distinct regulation of the anterior and posterior myeloperoxidase expression by Etv2 and Gata1 during primitive Granulopoiesis in zebrafish

Glenn, N.O., Schumacher, J.A., Kim, H.J., Zhao, E.J., Skerniskyte, J., Sumanas, S.
Developmental Biology   393(1): 149-59 (Journal)
Registered Authors
Glenn, Nikki, Kim, Hyon, Schumacher, Jennifer, Sumanas, Saulius
Er71, Etsrp, Etv2, Gata1, Granulocytes, Myeloid, Neutrophil, Primitive hematopoiesis, Zebrafish
MeSH Terms
  • Animals
  • Basic Helix-Loop-Helix Transcription Factors/genetics
  • Embryo, Nonmammalian
  • GATA1 Transcription Factor/biosynthesis
  • GATA1 Transcription Factor/genetics*
  • Gene Expression Regulation, Developmental
  • Gene Knockdown Techniques
  • Hematopoietic Stem Cells/cytology
  • Hematopoietic Stem Cells/physiology
  • Leukopoiesis*
  • Mesoderm/embryology
  • Mesoderm/metabolism
  • Morpholinos/genetics
  • Neutrophils/cytology*
  • Peroxidase/biosynthesis*
  • Peroxidase/genetics
  • Proto-Oncogene Proteins/biosynthesis
  • Proto-Oncogene Proteins/genetics
  • Trans-Activators/biosynthesis
  • Trans-Activators/genetics
  • Troponin T/genetics
  • Zebrafish/blood
  • Zebrafish/embryology*
  • Zebrafish Proteins/biosynthesis
  • Zebrafish Proteins/genetics*
24956419 Full text @ Dev. Biol.
Neutrophilic granulocytes are the most abundant type of myeloid cells and form an essential part of the innate immune system. In vertebrates the first neutrophils are thought to originate during primitive hematopoiesis, which precedes hematopoietic stem cell formation. In zebrafish embryos, it has been suggested that primitive neutrophils may originate in two distinct sites, the anterior (ALPM) and posterior lateral plate mesoderm (PLPM). An ETS-family transcription factor Etsrp/Etv2/ER71 has been implicated in vasculogenesis and hematopoiesis in multiple vertebrates. However, its role during neutrophil development is not well understood. Here we demonstrate using zebrafish embryos that Etv2 has a specific cell-autonomous function during primitive neutropoiesis in the anterior lateral plate mesoderm (ALPM) but has little effect on erythropoiesis or the posterior lateral plate mesoderm (PLPM) expression of neutrophil marker myeloperoxidase mpo/mpx. Our results argue that ALPM-derived neutrophils originate from etv2-expressing cells which downregulate etv2 during neutropoiesis. We further show that Scl functions downstream of Etv2 in anterior neutropoiesis. Additionally, we demonstrate that mpx expression within the PLPM overlaps with gata1 expression, potentially marking the cells with a dual myelo-erythroid potential. Intriguingly, initiation of mpx expression in the PLPM is dependent on gata1 but not etv2 function. Our results demonstrate that mpx expression is controlled differently in the ALPM and PLPM regions and describe novel roles for etv2 and gata1 during primitive neutropoiesis.
Genes / Markers
Mutation and Transgenics
Human Disease / Model Data
Sequence Targeting Reagents
Engineered Foreign Genes
Errata and Notes