ZFIN ID: ZDB-PUB-131119-28
Small heat shock proteins are necessary for heart migration and laterality determination in zebrafish
Lahvic, J.L., Ji, Y., Marin, P., Zuflacht, J.P., Springel, M.W., Wosen, J.E., Davis, L., Hutson, L.D., Amack, J.D., and Marvin, M.J.
Date: 2013
Source: Developmental Biology   384(2): 166-180 (Journal)
Registered Authors: Amack, Jeffrey, Hutson, Lara, Ji, Yongchang, Marvin, Martha J.
Keywords: left-right asymmetry, small heat shock protein, cardia bifida, Kupffer's vesicle, cilia, yolk syncytial layer
MeSH Terms:
  • Animals
  • Base Sequence
  • Body Patterning/physiology*
  • DNA Primers
  • Heart/embryology*
  • Heat-Shock Proteins, Small/genetics
  • Heat-Shock Proteins, Small/physiology*
  • Microscopy, Electron, Transmission
  • Polymerase Chain Reaction
  • Zebrafish/embryology*
PubMed: 24140541 Full text @ Dev. Biol.

Small heat shock proteins (sHsps) regulate cellular functions not only under stress, but also during normal development, when they are expressed in organ-specific patterns. Here we demonstrate that two small heat shock proteins expressed in embryonic zebrafish heart, hspb7 and hspb12, have roles in the development of left–right asymmetry. In zebrafish, laterality is determined by the motility of cilia in Kupffer's vesicle (KV), where hspb7 is expressed; knockdown of hspb7 causes laterality defects by disrupting the motility of these cilia. In embryos with reduced hspb7, the axonemes of KV cilia have a 9+0 structure, while control embyros have a predominately 9+2 structure. Reduction of either hspb7 or hspb12 alters the expression pattern of genes that propagate the signals that establish left–right asymmetry: the nodal-related gene southpaw (spaw) in the lateral plate mesoderm, and its downstream targets pitx2, lefty1 and lefty2. Partial depletion of hspb7 causes concordant heart, brain and visceral laterality defects, indicating that loss of KV cilia motility leads to coordinated but randomized laterality. Reducing hspb12 leads to similar alterations in the expression of downstream laterality genes, but at a lower penetrance. Simultaneous reduction of hspb7 and hspb12 randomizes heart, brain and visceral laterality, suggesting that these two genes have partially redundant functions in the establishment of left–right asymmetry. In addition, both hspb7 and hspb12 are expressed in the precardiac mesoderm and in the yolk syncytial layer, which supports the migration and fusion of mesodermal cardiac precursors. In embryos in which the reduction of hspb7 or hspb12 was limited to the yolk, migration defects predominated, suggesting that the yolk expression of these genes rather than heart expression is responsible for the migration defects.