PUBLICATION

Modulation of glial and neuronal migration by lipocalin-2 in zebrafish

Authors
Kim, H., Lee, S., Park, H.C., Lee, W.H., Lee, M.S., and Suk, K.
ID
ZDB-PUB-120223-17
Date
2011
Source
Immune Network   11(6): 342-347 (Journal)
Registered Authors
Park, Hae-Chul
Keywords
LCN2, glia, cell migration, neuroinflammation, central nervous system, spinal cord
MeSH Terms
none
PubMed
22346773 Full text @ Immune Netw.
Abstract

Background

Glial cells are involved in immune and inflammatory responses in the central nervous system (CNS). Glial cells such as microglia and astrocytes also provide structural and functional support for neurons. Migration and morphological changes of CNS cells are associated with their physiological as well as pathological functions. The secreted protein lipocalin-2 (LCN2) has been previously implicated in regulation of diverse cellular processes of glia and neurons, including cell migration and morphology.

Methods

Here, we employed a zebrafish model to analyze the role of LCN2 in CNS cell migration and morphology in vivo. In the first part of this study, we examined the indirect effect of LCN2 on cell migration and morphology of microglia, astrocytes, and neurons cultured in vitro.

Results

Conditioned media collected from LCN2-treated astrocytes augmented migration of glia and neurons in the Boyden chamber assay. The conditioned media also increased the number of neuronal processes. Next, in order to further understand the role of LCN2 in the CNS in vivo, LCN2 was ectopically expressed in the zebrafish spinal cord. Expression of exogenous LCN2 modulated neuronal cell migration in the spinal cord of zebrafish embryos, supporting the role of LCN2 as a cell migration regulator in the CNS.

Conclusion

Thus, LCN2 proteins secreted under diverse conditions may play an important role in CNS immune and inflammatory responses by controlling cell migration and morphology.

Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping