PUBLICATION
Grading Movement Strength by Changes in Firing Intensity versus Recruitment of Spinal Interneurons
- Authors
- Bhatt, D.H., McLean, D.L., Hale, M.E., and Fetcho, J.R.
- ID
- ZDB-PUB-070122-8
- Date
- 2007
- Source
- Neuron 53(1): 91-102 (Journal)
- Registered Authors
- Bhatt, Dimple, Fetcho, Joseph R., Hale, Melina
- Keywords
- none
- MeSH Terms
-
- Fluorescent Dyes
- Movement/physiology*
- Zebrafish/anatomy & histology
- Zebrafish/physiology*
- Muscle, Skeletal/innervation
- Muscle, Skeletal/physiology
- Interneurons/cytology
- Interneurons/physiology
- Action Potentials/physiology
- Motor Activity/physiology
- Swimming/physiology
- Calcium/analysis
- Calcium/metabolism
- Calcium Signaling/physiology
- Neural Pathways/cytology
- Neural Pathways/physiology
- Animals
- Spinal Cord/anatomy & histology
- Spinal Cord/physiology*
- Patch-Clamp Techniques
- Indicators and Reagents
- Nerve Net/physiology*
- Tail/innervation
- Tail/physiology
- PubMed
- 17196533 Full text @ Neuron
Citation
Bhatt, D.H., McLean, D.L., Hale, M.E., and Fetcho, J.R. (2007) Grading Movement Strength by Changes in Firing Intensity versus Recruitment of Spinal Interneurons. Neuron. 53(1):91-102.
Abstract
Animals can produce movements of widely varying speed and strength by changing the recruitment of motoneurons according to the well-known size principle. Much less is known about patterns of recruitment in the spinal interneurons that control motoneurons because of the difficulties of monitoring activity simultaneously in multiple interneurons of an identified class. Here we use electrophysiology in combination with in vivo calcium imaging of groups of identified excitatory spinal interneurons in larval zebrafish to explore how they are recruited during different forms of the escape response that fish use to avoid predators. Our evidence indicates that escape movements are graded largely by differences in the level of activity within an active pool of interneurons rather than by the recruitment of an inactive subset.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping