PUBLICATION
Vascular cell biology in vivo: a new piscine paradigm?
- Authors
- Weinstein, B.
- ID
- ZDB-PUB-020913-7
- Date
- 2002
- Source
- Trends in cell biology 12(9): 439-445 (Review)
- Registered Authors
- Weinstein, Brant M.
- Keywords
- none
- MeSH Terms
-
- Embryo, Nonmammalian/anatomy & histology
- Embryo, Nonmammalian/physiology
- Larva/anatomy & histology
- Larva/physiology
- Proteins/genetics
- Proteins/metabolism
- Neovascularization, Physiologic*
- Blood Vessels/anatomy & histology
- Blood Vessels/physiology*
- Zebrafish/anatomy & histology*
- Zebrafish/genetics
- Zebrafish/physiology*
- Green Fluorescent Proteins
- Animals, Genetically Modified
- Animals
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Basic Helix-Loop-Helix Transcription Factors
- Angiography/methods
- Zebrafish Proteins*
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- In Situ Hybridization
- PubMed
- 12220865 Full text @ Trends Cell Biol.
Citation
Weinstein, B. (2002) Vascular cell biology in vivo: a new piscine paradigm?. Trends in cell biology. 12(9):439-445.
Abstract
Understanding how blood vessels form has become increasingly important in recent years yet remains difficult to study. The architecture and context of blood vessels are difficult to reproduce in vitro, and most developing blood vessels in vivo are relatively inaccessible to observation and experimental manipulation. Zebrafish, however, provide several advantages. They have small, accessible, transparent embryos and larvae, facilitating high-resolution imaging in vivo. In addition, genetic and experimental tools and methods are available for functional manipulation of the entire organism, vascular tissues or even single vascular- or non-vascular cells. Together, these features make the fish amenable to 'in vivo vascular cell biology'.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping