ZFIN ID: ZDB-PERS-970217-5
Draper, Bruce
Email: bwdraper@ucdavis.edu
URL: http://www.mcb.ucdavis.edu/faculty-labs/draper/
Affiliation: Draper Laboratory
Address: Molecular and Cellular Biology University of California, Davis One Shields Avenue Davis, CA 95616 USA
Phone: 530-752-0833
Fax: 530-752-3085


Bravo, P., Liu, Y., Draper, B.W., Marlow, F.L. (2023) Macrophage activation drives ovarian failure and masculinization in zebrafish. Science advances. 9:eadg7488eadg7488
Sun, Y., Reid, B., Zhang, Y., Zhu, K., Ferreira, F., Estrada, A., Sun, Y., Draper, B., Yue, H., Copos, C., Lin, F., Bernadskaya, Y., Zhao, M., Mogilner, A. (2023) Electric field-guided collective motility initiation of large epidermal cell groups. Molecular biology of the cell. 34(5):ar48
Liu, Y., Kassack, M.E., McFaul, M.E., Christensen, L.N., Siebert, S., Wyatt, S.R., Kamei, C.N., Horst, S., Arroyo, N., Drummond, I.A., Juliano, C.E., Draper, B.W. (2022) Single-cell transcriptome reveals insights into the development and function of the zebrafish ovary. eLIFE. 11:
Blokhina, Y.P., Frees, M.A., Nguyen, A., Sharifi, M., Chu, D.B., Bispo, K., Olaya, I., Draper, B.W., Burgess, S.M. (2021) Rad21l1 cohesin subunit is dispensable for spermatogenesis but not oogenesis in zebrafish. PLoS Genetics. 17:e1009127
Yan, Y.L., Batzel, P., Titus, T., Sydes, J., Desvignes, T., Bremiller, R., Draper, B., Postlethwait, J.H. (2019) A Hormone That Lost Its Receptor: Anti-Müllerian Hormone (AMH) in Zebrafish Gonad Development and Sex Determination. Genetics. 213(2):529-553
Leerberg, D.M., Hopton, R.E., Draper, B.W. (2019) Fibroblast Growth Factor Receptors Function Redundantly During Zebrafish Embryonic Development. Genetics. 212(4):1301-1319
Blokhina, Y.P., Nguyen, A.D., Draper, B.W., Burgess, S.M. (2019) The telomere bouquet is a hub where meiotic double-strand breaks, synapsis, and stable homolog juxtaposition are coordinated in the zebrafish, Danio rerio. PLoS Genetics. 15:e1007730
Kossack, M.E., Draper, B.W. (2019) Genetic regulation of sex determination and maintenance in zebrafish (Danio rerio). Current topics in developmental biology. 134:119-149
Kossack, M.E., High, S.K., Hopton, R.E., Yan, Y.L., Postlethwait, J.H., Draper, B.W. (2018) Female Sex Development and Reproductive Duct Formation Depend on Wnt4a in Zebrafish. Genetics. 211(1):219-233
Yan, Y.L., Desvignes, T., BreMiller, R., Wilson, C., Dillon, D., High, S., Draper, B., Buck, C.L., Postlethwait, J. (2017) The gonadal soma controls ovarian follicle proliferation through Gsdf in zebrafish. Developmental Dynamics : an official publication of the American Association of Anatomists. 246(11):925-945
Leerberg, D.M., Sano, K., Draper, B.W. (2017) Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish. PLoS Genetics. 13:e1006993
Forbes, M.M., Draper, B.W., Marlow, F.L. (2017) Retraction: The polarity factor Bucky ball associates with the centrosome and promotes microtubule rearrangements to establish the oocyte axis in zebrafish. Development (Cambridge, England).
Webster, K.A., Schach, U., Ordaz, A., Steinfeld, J.S., Draper, B.W., Siegfried, K.R. (2017) Dmrt1 is necessary for male sexual development in zebrafish. Developmental Biology. 422(1):33-46
Draper, B.W. (2017) Identification of Germ-Line Stem Cells in Zebrafish. Methods in molecular biology (Clifton, N.J.). 1463:103-113
Dranow, D.B., Hu, K., Bird, A.M., Lawry, S.T., Adams, M.T., Sanchez, A., Amatruda, J.F., Draper, B.W. (2016) Bmp15 Is an Oocyte-Produced Signal Required for Maintenance of the Adult Female Sexual Phenotype in Zebrafish. PLoS Genetics. 12:e1006323
Sun, Y.H., Sun, Y., Zhu, K., Draper, B.W., Zeng, Q., Mogilner, A., Zhao, M. (2016) An Experimental Model for Simultaneous Study of Migration of Cell Fragments, Single Cells, and Cell Sheets. Methods in molecular biology (Clifton, N.J.). 1407:251-72
Dranow, D.B., Tucker, R.P., and Draper, B.W. (2013) Germ cells are required to maintain a stable sexual phenotype in adult zebrafish. Developmental Biology. 376(1):43-50
Beer, R.L., and Draper, B.W. (2013) nanos3 maintains germline stem cells and expression of the conserved germline stem cell gene nanos2 in the zebrafish ovary. Developmental Biology. 374(2):308-318
Du, S., Draper, B.W., Mione, M., Moens, C.B., and Bruce, A.E. (2012) Differential regulation of epiboly initiation and progression by zebrafish Eomesodermin A. Developmental Biology. 362(1):11-23
Draper, B.W. (2012) Identification of oocyte progenitor cells in the zebrafish ovary. Methods in molecular biology (Clifton, N.J.). 916:157-165
Huang, H.Y., Houwing, S., Kaaij, L.J., Meppelink, A., Redl, S., Gauci, S., Vos, H., Draper, B.W., Moens, C.B., Burgering, B.M., Ladurner, P., Krijgsveld, J., Berezikov, E., and Ketting, R.F. (2011) Tdrd1 acts as a molecular scaffold for Piwi proteins and piRNA targets in zebrafish. The EMBO journal. 30(16):3298-308
Wong, A.C., Draper, B.W., and Van Eenennaam, A.L. (2011) FLPe functions in zebrafish embryos. Transgenic Research. 20(2):409-415
Leu, D.H., and Draper, B.W. (2010) The ziwi promoter drives germline-specific gene expression in zebrafish. Developmental Dynamics : an official publication of the American Association of Anatomists. 239(10):2714-2721
Draper, B.W., and Moens, C.B. (2009) A high-throughput method for zebrafish sperm cryopreservation and in vitro fertilization. Journal of visualized experiments : JoVE. (29)
Stickney, H.L., Imai, Y., Draper, B., Moens, C. and Talbot, W.S. (2007) Zebrafish bmp4 functions during late gastrulation to specify ventroposterior cell fates. Developmental Biology. 310(1):71-84
Draper, B.W., McCallum, C.M., and Moens, C.B. (2007) nanos1 is required to maintain oocyte production in adult zebrafish. Developmental Biology. 305(2):589-598
Moens, C.B., Draper, B.W., Donn, T., Mullenberg, J., and Wolf-Saxon, E. (2006) Submission and curation of data from a tilling mutagenesis screen. ZFIN Direct Data Submission.
Jackman, W.R., Draper, B.W., and Stock, D.W. (2004) Fgf signaling is required for zebrafish tooth development. Developmental Biology. 274(1):139-157
Draper, B.W., McCallum, C.M., Stout, J.L., Slade, A.J., and Moens, C.B. (2004) A high-throughput method for identifying N-ethyl-N-nitrosourea (ENU)-induced point mutations in zebrafish. The Zebrafish: Genetics, Genomics and Informatics, 2nd ed., Methods Cell Biol.. 77:91-112
Draper, B.W., Stock, D.W., and Kimmel, C.B. (2003) Zebrafish fgf24 functions with fgf8 to promote posterior mesodermal development. Development (Cambridge, England). 130(19):4639-4654
Fischer, S., Draper, B.W., and Neumann, C.J. (2003) The zebrafish fgf24 mutant identifies an additional level of Fgf signaling involved in vertebrate forelimb initiation. Development (Cambridge, England). 130(15):3515-3524
Yan, Y.-L., Miller, C.T., Nissen, R.M., Singer, A., Liu, D., Kirn, A., Draper, B., Willoughby, J., Morcos, P.A., Amsterdam, A., Chung, B.-C., Westerfield, M., Haffter, P., Hopkins, N., Kimmel, C., and Postlethwait, J.H. (2002) A zebrafish sox9 gene required for cartilage morphogenesis. Development (Cambridge, England). 129(21):5065-5079
Amacher, S.L., Draper, B.W., Summers, B.R., and Kimmel, C.B. (2002) The zebrafish T-box genes no tail and spadetail are required for development of trunk and tail mesoderm and medial floor plate. Development (Cambridge, England). 129(14):3311-3323
Draper, B.W., Morcos, P.A., and Kimmel, C.B. (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: A quantifiable method for gene knockdown. Genesis (New York, N.Y. : 2000). 30(3):154-156
Grandel, H., Draper, B.W., and Schulte-Merker, S. (2000) dackel acts in the ectoderm of the zebrafish pectoral fin bud to maintain AER signaling. Development (Cambridge, England). 127(19):4169-4178
Draper, B. W., Phillips, J.B., Stock, D.W., and Kimmel, C.B. (1999) FGF signaling and mesodermal patterning in the zebrafish embryo. Developmental Biology. 210(1):151-180

Hazel L. Sive, Bruce W. Draper, Richard M. Harland and Harold Weintraub. (1990). Identification of a retinoic acid sensitive period during primary axis formation in Xenopus laevis. Genes and Development 4, 932-942.

Brad Windel, Bruce W. Draper, Yuxin Yin, Stephen O'Gorman and Geoffrey M. Wahl. (1991). A central role for chromosome breakage in gene amplification, deletion and amplicon integration. Genes and Development 5, 160-174.

Lihsia Chen, Michael Krause, Bruce Draper, Harold Weintraub and Andrew Fire. (1992). Body-wall muscle formation in Caenorhabditis elegans embryos that lack the MyoD homolog hlh-1. Science 256, 240-243.

Craig C. Mello, Bruce W. Draper, Michael Krause, Harold Weintraub and James R. Priess. (1992). The pie-1 and mex-1 genes and the maternal control of blastomere identity in early C. elegans embryos. Cell 70 163-176.

Bruce A. Bowerman, Bruce W. Draper, Craig C. Mello, James R. Priess. (1993). The maternal gene skn-1 encodes a protein that is distributed unequally in early C. elegans embryos. Cell 74, 443-452.

Craig C. Mello, Bruce W. Draper, James R.Priess. (1994). The maternal genes apx-1 and glp-1 and establishment of dorsal-ventral polarity in the early C. elegans embryo. Cell 77, 95-106.

Ruth E. Kelly, Margaret L. DeRose, Bruce W. Draper and Geoffrey M. Wahl. (1995). Identification of an origin of bi-directional DNA replication in the ubiquitously expressed mammalian CAD gene. Mol. Cell. Biol. 15, 4136-4148.

Craig C. Mello, Charlotte Schubert, Bruce Draper, Wei Zhang, Robert Lobel, and James R. Priess (1996). A maternally encoded protein required for germ-cell fate in C. elegans. Nature 382, 710-712.

Jennifer L. Watts, Bijan Etemad-Moghadam, Bruce W. Draper, Craig C. Mello, James R. Priess, and Kenneth J. Kemphues (1996). par-6, a new gene involved in the establishment of asymmetry in early C. elegans embryos, acts by mediating the asymmetric localization of PAR-3. Development 122, 3133-3140.

Bruce W. Draper, Craig C. Mello, Bruce Bowerman, Jeff Hardin, and James R. Priess (1996). MEX-3 is a KH domain protein that regulates blastomere identity in the early C. elegans embryos. Cell 87, 205-216.

Michael Costa, Bruce W. Draper, and James R. Priess (1997). The role of actin microfilaments in patterning the C. elegans cuticle. Devel. Biol. 184, 373-384.