ZFIN ID: ZDB-LAB-990210-2
Peter Currie Lab
PI/Director: Currie, Peter D.
Contact Person: Berger, Silke
Email: peter.currie@monash.edu
URL: http://www.med.monash.edu.au/armi
Address: Australian Regenerative Medicine Institute (ARMI) EMBL Australia Building 75, Level 1 Monash University Clayton, VIC 3800 Australia
Country: Australia
Phone: 61-3-9902-9620
Fax: 61-3-9905-9862
Line Designation: pc


GENOMIC FEATURES ORIGINATING FROM THIS LAB
Show all 36 genomic features


STATEMENT OF RESEARCH INTERESTS
A combination of genetic and embryological amenability has placed zebrafish at the forefront of attempts to understand how genes function to control vertebrate development. The optical transparency of the zebrafish embryo provides the ability to visualise every cell in the forming embryo by simple optical inspection as well as enabling the use of a host of cell labeling and transgenic approaches to dissect embryonic development. Furthermore the large scale mutagenesis of the zebrafish genome has also produced many different classes of mutations which disrupt gene function. We use the many advantages of zebrafish embryology to dissect molecular mechanisms which act to pattern the vertebrate embryo. In particular we are interested in how specific muscle cell types are determined within the developing embryo.

Skeletal muscle of the vertebrate body derives from segmented arrays of mesodermal structures termed somites which form from the paraxial mesoderm in a stereotypic rostral to caudal progression. Each somite is then partitioned into dorsal and ventral compartments that contain progenitors for individual structures of the developing embryo. The ventral portion of the somite undergoes a mesenchymal transition and gives rise to the cells of the sclerotome which will migrate and differentiate into components of the axial skeleton. The dorsal segment of the somite remains epithelial and forms the dermomyotome. The dorsal portion of the dermomyotome gives rise to the dermis. The remainder forms the myotome which will give rise to skeletal muscle of the trunk and tail.

Research in my laboratory focuses on attempts to understand how the cells of the vertebrate myotome are specified to become individual muscle cells later in development. To do this we utilise the small, genetically tractable and embryologically amenable teleost, zebrafish. Three basic cell types differentiate in the mature zebrafish myotome. Slow muscle cells, fast muscle cells and muscle pioneer cells. These different cell populations have different embryonic origins. Slow muscle cells arise and differentiate next to the notochord, and following this differentiation the majority of slow muscle undergoes a remarkable migration, traversing the entire extent of the forming myotome to produce a superficial subcutaneous layer of differentiated slow twitch muscle cells. Fast muscle cells differentiate behind this wave of migrating slow twitch muscle cells, arising from the remainder of the cells of the myotome. Muscle pioneer cells are the first differentiating cells of the zebrafish myotome and form as slow twitch muscle cells that express the Engrailed homeodomain proteins and that remain axial up to 48 hrs of development.

We are using a number of genetic and molecular approaches to dissect the events underlying the specification of these cells. Firstly we have identified families of secreted peptides that are expressed within tissues that are known to control specification of cells of the myotome. Many studies have implicated signals from the notochord in the induction of cells of the vertebrate somite. Specifically, we have implicated members of the Hedgehog family of secreted glycoproteins secreted from the notochord, in the specification of slow muscle cells. Specific members of this protein family are responsible for the specification of the most medial of myoblasts, the "adaxial" cells to produce either slow twitch muscle cells or muscle pioneer cells. This is an instructive cell fate choice as slow twitch muscle cells are expanded at the expense of fast twitch muscle cells when one member of the HH family, Sonic hedgehog (SHH), is over expressed in the developing zebrafish embryo. We continue to analyse the mechanisms by which HH proteins determine cell fate within the myotome and have instigated studies in vitro within primary myoblast cell cultures to dissect HH signal transduction.

The large scale mutagenesis of the zebrafish genome has produced a vast array of different mutations affecting all aspects of its development. In particular one class of mutations, termed the you-type mutants, disrupts the formation of cell types induced by HH proteins. We are currently investigating how these mutations disrupt cell type specification within the myotome, how this relates to the generation and transduction of the HH signal, and whether or not novel genes are mutated within this class of mutations.


LAB MEMBERS
Alaei, Sara Post-Doc Berger, Joachim Post-Doc Boyd, Andrew R. B. Post-Doc
Montandon, Margo Post-Doc Ratnayake, Danni Post-Doc Ruparelia, Avnika Post-Doc
Tulenko, Frank Post-Doc Wood, Alasdair Post-Doc Dale, Rebecca Graduate Student
Dauer, Mervyn Graduate Student Keenan, Samuel Graduate Student Manneken, Jessica Graduate Student
Salavaty, Adrian (Abbas) Graduate Student Tran, Quoc Duy Graduate Student Berger, Silke Research Staff
Hersey, Lucy Research Staff Sonntag, Carmen Research Staff


ZEBRAFISH PUBLICATIONS OF LAB MEMBERS
Hall, T.E., Wood, A.J., Ehrlich, O., Li, M., Sonntag, C.S., Cole, N.J., Huttner, I.G., Sztal, T.E., Currie, P.D. (2019) Cellular rescue in a zebrafish model of congenital muscular dystrophy type 1A. NPJ Regenerative medicine. 4:21
de Winter, J.M., Molenaar, J.P., Yuen, M., van der Pijl, R., Shen, S., Conijn, S., van de Locht, M., Willigenburg, M., Bogaards, S.J., van Kleef, E.S., Lassche, S., Persson, M., Rassier, D.E., Sztal, T.E., Ruparelia, A.A., Oorschot, V., Ramm, G., Hall, T.E., Xiong, Z., Johnson, C.N., Li, F., Kiss, B., Lozano-Vidal, N., Boon, R.A., Marabita, M., Nogara, L., Blaauw, B., Rodenburg, R.J., Kϋsters, B., Doorduin, J., Beggs, A.H., Granzier, H., Campbell, K., Ma, W., Irving, T., Malfatti, E., Romero, N.B., Bryson-Richardson, R.J., van Engelen, B.G., Voermans, N.C., Ottenheijm, C.A. (2019) KBTBD13 is an actin-binding protein that modulates muscle kinetics. The Journal of Clinical Investigation. 130(2):754-767
Keenan, S.R., Currie, P.D. (2019) The Developmental Phases of Zebrafish Myogenesis. Journal of developmental biology. 7(2)
Talbot, J.C., Teets, E.M., Ratnayake, D., Duy, P.Q., Currie, P.D., Amacher, S.L. (2019) Muscle precursor cell movements in zebrafish are dynamic and require six-family genes. Development (Cambridge, England). 146(10):
Ratnayake, D., Currie, P.D. (2019) Fluorescence-Activated Cell Sorting of Larval Zebrafish Muscle Stem/Progenitor Cells Following Skeletal Muscle Injury. Methods in molecular biology (Clifton, N.J.). 1889:245-254
Wood, A.J., Cohen, N., Joshi, V., Li, M., Costin, A., Hersey, L., McKaige, E.A., Manneken, J.D., Sonntag, C., Miles, L.B., Siegel, A., Currie, P.D. (2018) RGD inhibition of itgb1 ameliorates laminin-a2 deficient zebrafish fibre pathology. Human molecular genetics. 28(9):1403-1413
Goldshmit, Y., Tang, J.K.K.Y., Siegel, A.L., Nguyen, P.D., Kaslin, J., Currie, P.D., Jusuf, P.R. (2018) Different Fgfs have distinct roles in regulating neurogenesis after spinal cord injury in zebrafish. Neural Development. 13:24
Nguyen, P.D., Currie, P.D. (2018) Guidelines and best practices in successfully using Zebrabow for lineage tracing multiple cells within tissues. Methods (San Diego, Calif.). 150:63-67
Dauer, M.V.P., Currie, P.D., Berger, J. (2018) Skeletal malformations of Meox1-deficient zebrafish resemble human Klippel-Feil syndrome. Journal of anatomy. 233(6):687-695
Dancevic, C.M., Gibert, Y., Berger, J., Smith, A.D., Liongue, C., Stupka, N., Ward, A.C., McCulloch, D.R. (2018) The ADAMTS5 Metzincin Regulates Zebrafish Somite Differentiation. International Journal of Molecular Sciences. 19(3)
Jung, H., Baek, M., D'Elia, K.P., Boisvert, C., Currie, P.D., Tay, B.H., Venkatesh, B., Brown, S.M., Heguy, A., Schoppik, D., Dasen, J.S. (2018) The Ancient Origins of Neural Substrates for Land Walking. Cell. 172:667-682.e15
Sztal, T.E., McKaige, E.A., Williams, C., Ruparelia, A.A., Bryson-Richardson, R.J. (2018) Genetic compensation triggered by actin mutation prevents the muscle damage caused by loss of actin protein. PLoS Genetics. 14:e1007212
Thomasi, A.B.D., Sonntag, C., Pires, D.F., Zuidema, D., Benci, A., Currie, P.D., Wood, A.J. (2018) A Low-Cost Pulse Generator for Exacerbating Muscle Fiber Detachment Phenotypes in Zebrafish. Zebrafish. 15(4):420-424
Berger, J., Berger, S., Li, M., Jacoby, A.S., Arner, A., Bavi, N., Stewart, A.G., Currie, P.D. (2018) In Vivo Function of the Chaperonin TRiC in α-Actin Folding during Sarcomere Assembly. Cell Reports. 22:313-322
Masselink, W., Masaki, M., Sieiro, D., Marcelle, C., Currie, P.D. (2017) Phosphorylation of Lbx1 controls lateral myoblast migration into the limb. Developmental Biology. 430:302-309
Dudczig, S., Currie, P.D., Jusuf, P.R. (2017) Developmental and adult characterization of secretagogin expressing amacrine cells in zebrafish retina. PLoS One. 12:e0185107
Ng Chi Kei, J., Currie, P.D., Jusuf, P.R. (2017) Fate bias during neural regeneration adjusts dynamically without recapitulating developmental fate progression. Neural Development. 12:12
Nguyen, P.D., Gurevich, D.B., Sonntag, C., Hersey, L., Alaei, S., Nim, H.T., Siegel, A., Hall, T.E., Rossello, F.J., Boyd, S.E., Polo, J.M., Currie, P.D. (2017) Muscle Stem Cells Undergo Extensive Clonal Drift during Tissue Growth via Meox1-Mediated Induction of G2 Cell-Cycle Arrest. Cell Stem Cell. 21:107-119.e6
Goodings, L., He, J., Wood, A., Harris, W.A., Currie, P.D., Jusuf, P.R. (2017) In vivo expression of Nurr1/Nr4a2a in developing retinal amacrine subtypes in zebrafish Tg(nr4a2a:eGFP) transgenics. The Journal of comparative neurology. 525(8):1962-1979
Tulenko, F.J., Massey, J.L., Holmquist, E., Kigundu, G., Thomas, S., Smith, S.M.E., Mazan, S., Davis, M.C. (2017) Fin-fold development in paddlefish and catshark and implications for the evolution of the autopod. Proceedings. Biological sciences. 284(1855)
Dudczig, S., Currie, P.D., Poggi, L., Jusuf, P.R. (2017) In Vivo Imaging of Transgenic Gene Expression in Individual Retinal Progenitors in Chimeric Zebrafish Embryos to Study Cell Nonautonomous Influences. Journal of visualized experiments : JoVE. (121)
Berger, J., Berger, S., Li, M., Currie, P.D. (2017) Myo18b is essential for sarcomere assembly in fast skeletal muscle. Human molecular genetics. 26(6):1146-1156
Li, M., Hromowyk, K.J., Amacher, S.L., Currie, P.D. (2017) Muscular dystrophy modeling in zebrafish. Methods in cell biology. 138:347-380
Nguyen, P.D., Currie, P.D. (2017) Using Transgenic Zebrafish to Study Muscle Stem/Progenitor Cells. Methods in molecular biology (Clifton, N.J.). 1556:117-125
Sztal, T.E., Currie, P.D., Bryson-Richardson, R.J. (2017) Analysis of RNA Expression in Adult Zebrafish Skeletal Muscle. Methods in molecular biology (Clifton, N.J.). 1668:27-35
O'Grady, G.L., Best, H.A., Sztal, T.E., Schartner, V., Sanjuan-Vazquez, M., Donkervoort, S., Abath Neto, O., Sutton, R.B., Ilkovski, B., Romero, N.B., Stojkovic, T., Dastgir, J., Waddell, L.B., Boland, A., Hu, Y., Williams, C., Ruparelia, A.A., Maisonobe, T., Peduto, A.J., Reddel, S.W., Lek, M., Tukiainen, T., Cummings, B.B., Joshi, H., Nectoux, J., Brammah, S., Deleuze, J.F., Ing, V.O., Ramm, G., Ardicli, D., Nowak, K.J., Talim, B., Topaloglu, H., Laing, N.G., North, K.N., MacArthur, D.G., Friant, S., Clarke, N.F., Bryson-Richardson, R.J., Bönnemann, C.G., Laporte, J., Cooper, S.T. (2016) Variants in the Oxidoreductase PYROXD1 Cause Early-Onset Myopathy with Internalized Nuclei and Myofibrillar Disorganization. American journal of human genetics. 99(5):1086-1105
Sztal, T.E., Ruparelia, A.A., Williams, C., Bryson-Richardson, R.J. (2016) Using Touch-evoked Response and Locomotion Assays to Assess Muscle Performance and Function in Zebrafish. Journal of visualized experiments : JoVE. (116)
Ng Chi Kei, J., Dudczig, S., Currie, P.D., Jusuf, P.R. (2016) Feedback from each retinal neuron population drives expression of subsequent fate determinant genes without influencing the cell cycle exit timing. The Journal of comparative neurology. 524(13):2553-66
Masselink, W., Cole, N.J., Fenyes, F., Berger, S., Sonntag, C., Wood, A., Nguyen, P.D., Cohen, N., Knopf, F., Weidinger, G., Hall, T.E., Currie, P.D. (2016) A somitic contribution to the apical ectodermal ridge is essential for fin formation. Nature. 535(7613):542-6
Gurevich, D.B., Nguyen, P.D., Siegel, A.L., Ehrlich, O.V., Sonntag, C., Phan, J.M., Berger, S., Ratnayake, D., Hersey, L., Berger, J., Verkade, H., Hall, T.E., Currie, P.D. (2016) Asymmetric division of clonal muscle stem cells coordinates muscle regeneration in vivo. Science (New York, N.Y.). 353(6295):aad9969
Leber, Y., Ruparelia, A.A., Kirfel, G., van der Ven, P.F., Hoffmann, B., Merkel, R., Bryson-Richardson, R.J., Fürst, D.O. (2016) Filamin C is a highly dynamic protein associated with fast repair of myofibrillar microdamage. Human molecular genetics. 25(13):2776-2788
Ruparelia, A.A., Oorschot, V., Ramm, G., Bryson-Richardson, R.J. (2016) FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Human molecular genetics. 25(11):2131-2142
Don, E.K., de Jong-Curtain, T.A., Doggett, K., Hall, T.E., Heng, B., Badrock, A.P., Winnick, C., Nicholson, G.A., Guillemin, G.J., Currie, P.D., Hesselson, D., Heath, J.K., Cole, N.J. (2016) Genetic basis of hindlimb loss in a naturally occurring vertebrate model. Biology Open. 5(3):359-66
Sztal, T.E., Zhao, M., Williams, C., Oorschot, V., Parslow, A.C., Giousoh, A., Yuen, M., Hall, T.E., Costin, A., Ramm, G., Bird, P.I., Busch-Nentwich, E.M., Stemple, D.L., Currie, P.D., Cooper, S.T., Laing, N.G., Nowak, K.J., Bryson-Richardson, R.J. (2015) Zebrafish models for nemaline myopathy reveal a spectrum of nemaline bodies contributing to reduced muscle function. Acta Neuropathologica. 130(3):389-406
Goldshmit, Y., Frisca, F., Kaslin, J., Pinto, A.R., Tang, J.K., Pébay, A., Pinkas-Kramarski, R., Currie, P.D. (2015) Decreased anti-regenerative effects after spinal cord injury in spry4-/- mice. Neuroscience. 287:104-12
Berger, J., Hall, T.E., Currie, P.D. (2015) Novel Transgenic Lines to Label Sarcolemma and Myofibrils of the Musculature. Zebrafish. 12(1):124-5
Gurevich, D., Siegel, A., Currie, P.D. (2015) Skeletal Myogenesis in the Zebrafish and Its Implications for Muscle Disease Modelling. Results and problems in cell differentiation. 56:49-76
Berger, J., Tarakci, H., Berger, S., Li, M., Hall, T.E., Arner, A., Currie, P.D. (2014) Loss of tropomodulin4 in the zebrafish mutant träge causes cytoplasmic rod formation and muscle weakness reminiscent of nemaline myopathy. Disease models & mechanisms. 7(12):1407-15
Ruparelia, A.A., Oorschot, V., Vaz, R., Ramm, G., Bryson-Richardson, R.J. (2014) Zebrafish models of BAG3 myofibrillar myopathy suggest a toxic gain of function leading to BAG3 insufficiency. Acta Neuropathologica. 128(6):821-33
Wood, A.J., Currie, P.D. (2014) Analysing regenerative potential in zebrafish models of congenital muscular dystrophy. The international journal of biochemistry & cell biology. 56C:30-37
Nguyen, P.D., Hollway, G.E., Sonntag, C., Miles, L.B., Hall, T.E., Berger, S., Fernandez, K.J., Gurevich, D.B., Cole, N.J., Alaei, S., Ramialison, M., Sutherland, R.L., Polo, J.M., Lieschke, G.J., Currie, P.D. (2014) Haematopoietic stem cell induction by somite-derived endothelial cells controlled by meox1. Nature. 512(7514):314-8
Ng, J., Currie, P., Jusuf, P. R. (2014) The Regenerative Potential of the Vertebrate Retina: Lessons from the Zebrafish. Regenerative Biology of the Eye. :49-82
Masselink, W., Wong, J.C., Liu, B., Fu, J., and Currie, P.D. (2014) Low-Cost Silicone Imaging Casts for Zebrafish Embryos and Larvae. Zebrafish. 11(1):26-31
Giacomotto, J., Brouilly, N., Walter, L., Mariol, M.C., Berger, J., Ségalat, L., Becker, T.S., Currie, P.D., and Gieseler, K. (2013) Chemical genetics unveils a key role of mitochondrial dynamics, cytochrome c release and IP3R activity in muscular dystrophy. Human molecular genetics. 22(22):4562-78
Siegel, A.L., Gurevich, D.B., and Currie, P.D. (2013) A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell. The FEBS journal. 280(17):4074-88
Berger, J., and Currie, P.D. (2013) 503unc, a small and muscle-specific zebrafish promoter. Genesis (New York, N.Y. : 2000). 51(6):443-7
Don, E.K., Currie, P.D., Cole, N.J. (2013) The evolutionary history of the development of the pelvic fin/hindlimb. Journal of anatomy. 222:114-133
Berger, J., and Currie, P.D. (2012) Zebrafish models flex their muscles to shed light on muscular dystrophies. Disease models & mechanisms. 5(6):726-732
Sztal, T.E., Sonntag, C., Hall, T.E., and Currie, P.D. (2012) Epistatic dissection of laminin-receptor interactions in dystrophic zebrafish muscle. Human molecular genetics. 21(21):4718-4731
Jusuf, P.R., Albadri, S., Paolini, A., Currie, P.D., Argenton, F., Higashijima, S., Harris, W.A., and Poggi, L. (2012) Biasing Amacrine Subtypes in the Atoh7 Lineage through Expression of Barhl2. The Journal of neuroscience : the official journal of the Society for Neuroscience. 32(40):13929-13944
Ruparelia, A.A., Zhao, M., Currie, P.D., and Bryson-Richardson, R.J. (2012) Characterization and Investigation of zebrafish models of Filamin related myofibrillar myopathy. Human molecular genetics. 21(18):4073-4083
Goldshmit, Y., Matteo, R., Sztal, T., Ellett, F., Frisca, F., Moreno, K., Crombie, D., Lieschke, G.J., Currie, P.D., Sabbadini, R.A., and Pebay, A. (2012) Blockage of Lysophosphatidic Acid Signaling Improves Spinal Cord Injury Outcomes. The American journal of pathology. 181(3):978-992
Johnson, J.L., Hall, T.E., Dyson, J.M., Sonntag, C., Ayers, K., Berger, S., Gautier, P., Mitchell, C., Hollway, G.E., and Currie, P.D. (2012) Scube activity is necessary for Hedgehog signal transduction in vivo. Developmental Biology. 368(2):193-202
Berger, J., Sztal, T., and Currie, P.D. (2012) Quantification of birefringence readily measures the level of muscle damage in zebrafish. Biochemical and Biophysical Research Communications. 423(4):785-788
Goldshmit, Y., Sztal, T.E., Jusuf, P.R., Hall, T.E., Nguyen-Chi, M., and Currie, P.D. (2012) Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish. The Journal of neuroscience : the official journal of the Society for Neuroscience. 32(22):7477-7492
Cole, N.J., Currie, P. (2012) Shaping muscle bioarchitecture for the fin to limb transition.. Bioarchitecture. 2(3):98-103
Asharani, P.V., Keupp, K., Semler, O., Wang, W., Li, Y., Thiele, H., Yigit, G., Pohl, E., Becker, J., Frommolt, P., Sonntag, C., Altmüller, J., Zimmermann, K., Greenspan, D.S., Akarsu, N.A., Netzer, C., Schönau, E., Wirth, R., Hammerschmidt, M., Nürnberg, P., Wollnik, B., and Carney, T.J. (2012) Attenuated BMP1 Function Compromises Osteogenesis, Leading to Bone Fragility in Humans and Zebrafish. American journal of human genetics. 90(4):661-674
Gupta, V.A., Kawahara, G., Myers, J.A., Chen, A.T., Hall, T.E., Manzini, M.C., Currie, P.D., Zhou, Y., Zon, L.I., Kunkel, L.M., and Beggs, A.H. (2012) A Splice Site Mutation in Laminin-alpha2 Results in a Severe Muscular Dystrophy and Growth Abnormalities in Zebrafish. PLoS One. 7(8):e43794
Lam, N.T., Currie, P.D., Lieschke, G.J., Rosenthal, N.A., and Kaye, D.M. (2012) Nerve Growth Factor Stimulates Cardiac Regeneration via Cardiomyocyte Proliferation in Experimental Heart Failure. PLoS One. 7(12):e53210
Nguyen-Chi, M.E., Bryson-Richardson, R., Sonntag, C., Hall, T.E., Gibson, A., Sztal, T., Chua, W., Schilling, T.F., and Currie, P.D. (2012) Morphogenesis and Cell Fate Determination within the Adaxial Cell Equivalence Group of the Zebrafish Myotome. PLoS Genetics. 8(10):e1003014
Wood, A.J., Müller, J.S., Jepson, C.D., Laval, S.H., Lochmüller, H., Bushby, K., Barresi, R., and Straub, V. (2011) Abnormal Vascular Development in Zebrafish Models for Fukutin and FKRP Deficiency. Human molecular genetics. 20(24):4879-90
Berger, J., Berger, S., Jacoby, A.S., Wilton, S.D., and Currie, P.D. (2011) Evaluation of Exon-Skipping Strategies for Duchenne Muscular Dystrophy Utilizing Dystrophin-deficient Zebrafish. Journal of Cellular and Molecular Medicine. 15(12):2643-51
Cole, N.J., Hall, T.E., Don, E.K., Berger, S., Boisvert, C.A., Neyt, C., Ericsson, R., Joss, J., Gurevich, D.B., and Currie, P.D. (2011) Development and evolution of the muscles of the pelvic fin. PLoS Biology. 9(10):e1001168
Williams, R.J., Hall, T.E., Glattauer, V., White, J., Pasic, P.J., Sorensen, A.B., Waddington, L., McLean, K.M., Currie, P.D., and Hartley, P.G. (2011) The in vivo performance of an enzyme-assisted self-assembled peptide/protein hydrogel. Biomaterials. 32(22):5304-5310
Don, E.K., Hall, T.E., Currie, P.D., and Cole, N.J. (2011) Morphology of pelvic fin loss in a zebrafish strain (Danio rerio). Journal of morphology. 272(5):583-589
Sztal, T., Berger, S., Currie, P.D., and Hall, T.E. (2011) Characterization of the laminin gene family and evolution in zebrafish. Developmental dynamics : an official publication of the American Association of Anatomists. 240(2):422-431
Tao, S., Witte, M., Bryson-Richardson, R.J., Currie, P.D., Hogan, B.M., and Schulte-Merker, S. (2011) Zebrafish prox1b Mutants Develop a Lymphatic Vasculature, and prox1b Does Not Specifically Mark Lymphatic Endothelial Cells. PLoS One. 6(12):e28934
Berger, J., Berger, S., Hall, T.E., Lieschke, G.J., and Currie, P.D. (2010) Dystrophin-deficient zebrafish feature aspects of the Duchenne muscular dystrophy pathology. Neuromuscular disorders : NMD. 20(12):826-832
Carney, T.J., Feitosa, N.M., Sonntag, C., Slanchev, K., Kluger, J., Kiyozumi, D., Gebauer, J.M., Coffin Talbot, J., Kimmel, C.B., Sekiguchi, K., Wagener, R., Schwarz, H., Ingham, P.W., and Hammerschmidt, M. (2010) Genetic analysis of fin development in zebrafish identifies furin and hemicentin1 as potential novel Fraser Syndrome disease genes. PLoS Genetics. 6(4):e1000907
Jacoby, A.S., Busch-Nentwich, E., Bryson-Richardson, R.J., Hall, T.E., Berger, J., Berger, S., Sonntag, C., Sachs, C., Geisler, R., Stemple, D.L., and Currie, P.D. (2009) The zebrafish dystrophic mutant softy maintains muscle fibre viability despite basement membrane rupture and muscle detachment. Development (Cambridge, England). 136(19):3367-3376
Laue, K., Jänicke, M., Plaster, N., Sonntag, C., and Hammerschmidt, M. (2008) Restriction of retinoic acid activity by Cyp26b1 is required for proper timing and patterning of osteogenesis during zebrafish development. Development (Cambridge, England). 135(22):3775-3787
Currie, P.D., Schilling, T.F., and Ingham, P.W. (2008) Small-scale marker-based screening for mutations in zebrafish development (2008). Methods in molecular biology (Clifton, N.J.). 461:493-512
Carney, T.J., von der Hardt, S., Sonntag, C., Amsterdam, A., Topczewski, J., Hopkins, N., and Hammerschmidt, M. (2007) Inactivation of serine protease Matriptase1a by its inhibitor Hai1 is required for epithelial integrity of the zebrafish epidermis. Development (Cambridge, England). 134(19):3461-3471
Daggett, D.F., Domingo, C.R., Currie, P.D., and Amacher, S.L. (2007) Control of morphogenetic cell movements in the early zebrafish myotome. Developmental Biology. 309(2):169-179
Cole, N.J., Currie, P.D. (2007) Insights from sharks: evolutionary and developmental models of fin development.. Developmental dynamics : an official publication of the American Association of Anatomists. 236(9):2421-31
Bryson-Richardson, R.J., Berger, S., Schilling, T.F., Hall, T.E., Cole, N.J., Gibson, A.J., Sharpe, J., and Currie, P.D. (2007) FishNet: an online database of zebrafish anatomy. BMC Biology. 5(1):34
Plaster, N., Sonntag, C., Schilling, T.F., and Hammerschmidt, M. (2007) REREa/Atrophin-2 interacts with histone deacetylase and Fgf8 signaling to regulate multiple processes of zebrafish development. Developmental dynamics : an official publication of the American Association of Anatomists. 236(7):1891-1904
Lieschke, G.J., and Currie, P.D. (2007) Animal models of human disease: zebrafish swim into view. Nature reviews. Genetics. 8(5):353-367
Hall, T.E., Bryson-Richardson, R.J., Berger, S., Jacoby, A.S., Cole, N.J., Hollway, G.E., Berger, J., and Currie, P.D. (2007) The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin {alpha}2-deficient congenital muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America. 104(17):7092-7097
Nousch, M., Reed, V., Bryson-Richardson, R.J., Currie, P.D., and Preiss, T. (2007) The eIF4G-homolog p97 can activate translation independent of caspase cleavage. RNA (New York, N.Y.). 13(3):374-384
Svetic, V., Hollway, G.E., Elworthy, S., Chipperfield, T.R., Davison, C., Adams, R.J., Eisen, J.S., Ingham, P.W., Currie, P.D., and Kelsh, R.N. (2007) Sdf1a patterns zebrafish melanophores and links the somite and melanophore pattern defects in choker mutants. Development (Cambridge, England). 134(5):1011-1022
Hollway, G.E., Bryson-Richardson, R.J., Berger, S., Cole, N.J., Hall, T.E., and Currie, P.D. (2007) Whole-somite rotation generates muscle progenitor cell compartments in the developing zebrafish embryo. Developmental Cell. 12(2):207-219
Berger, J., and Currie, P. (2007) The role of zebrafish in chemical genetics. Current Medicinal Chemistry. 14(22):2413-2420
Hollway, G.E., Maule, J., Gautier, P., Evans, T.M., Keenan, D.G., Lohs, C., Fischer, D., Wicking, C., and Currie, P.D. (2006) Scube2 mediates Hedgehog signalling in the zebrafish embryo. Developmental Biology. 294(1):104-118
Nica, G., Herzog, W., Sonntag, C., Nowak, M., Schwarz, H., Zapata, A.G., Hammerschmidt, M. (2006) Eya1 is required for lineage-specific differentiation, but not for cell survival in the zebrafish adenohypophysis. Developmental Biology. 292(1):189-204
Plaster, N., Sonntag, C., Busse, C.E., and Hammerschmidt, M. (2006) p53 deficiency rescues apoptosis and differentiation of multiple cell types in zebrafish flathead mutants deficient for zygotic DNA polymerase delta1. Cell death and differentiation. 13(2):223-235
Cole, N.J., Neyt, C., Currie, P.D. (2005) Morphogenesis and evolution of vertebrate appendicular muscle formation. Mechanisms of Development. 122:S160
Hall, T.E., Bryson-Richardson, R.J., Cole, N.J., Currie, P.D. (2005) Muscle stem cells and regeneration in zebrafish models of muscular dystrophies. Mechanisms of Development. 122:S131
Bryson-Richardson, R.J., Daggett, D.F., Cortes, F., Neyt, C., Keenan, D.G., and Currie, P.D. (2005) Myosin heavy chain expression in zebrafish and slow muscle composition. Developmental dynamics : an official publication of the American Association of Anatomists. 233(3):1018-1022
Nixon, S.J., Wegner, J., Ferguson, C., Méry, P.F., Hancock, J.F., Currie, P.D., Key, B., Westerfield, M., and Parton, R.G. (2005) Zebrafish as a model for caveolin-associated muscle disease; caveolin-3 is required for myofibril organization and muscle cell patterning. Human molecular genetics. 14(13):1727-1743
Haines, L., Neyt, C., Gautier, P., Keenan, D.G., Bryson-Richardson, R.J., Hollway, G.E., Cole, N.J., Currie, P.D. (2004) Met and Hgf signaling controls hypaxial muscle and lateral line development in the zebrafish. Development (Cambridge, England). 131(19):4857-4869
Daggett, D.F., Boyd, C.A,. Gautier, P., Bryson-Richardson, R.J., Thisse, C., Thisse, B., Amacher, S.L., and Currie, P.D. (2004) Developmentally restricted actin-regulatory molecules control morphogenetic cell movements in the zebrafish gastrula. Current biology : CB. 14(18):632-638
Bassett, D., and Currie, P.D. (2004) Identification of a zebrafish model of muscular dystrophy. Clinical and experimental pharmacology & physiology. 31(8):537-540
Herzog, W., Sonntag, C., Von Der Hardt, S., Roehl, H.H., Varga, Z.M., and Hammerschmidt, M. (2004) Fgf3 signaling from the ventral diencephalon is required for early specification and subsequent survival of the zebrafish adenohypophysis. Development (Cambridge, England). 131(15):3681-3692
Herzog, W., Sonntag, C., Walderich, B., Odenthal, J., Maischein, H.M., and Hammerschmidt, M. (2004) Genetic analysis of adenohypophysis formation in zebrafish. Molecular endocrinology (Baltimore, Md.). 18(5):1185-1195
Nica, G., Herzog, W., Sonntag, C., and Hammerschmidt, M. (2004) Zebrafish pit1 mutants lack three pituitary cell types and develop severe dwarfism. Molecular endocrinology (Baltimore, Md.). 18(5):1196-1209
Bryson-Richardson, RJ., and Currie, P.D. (2004) Optical projection tomography for spatio-temporal analysis in the zebrafish. The Zebrafish: Cellular and Developmental Biology,2nd Ed. Methods Cell Biol.. 76:37-50
Bassett, D.I., Bryson-Richardson, R.J., Daggett, D.F., Gautier, P., Kennan, D.G., and Currie, P.D. (2003) Dystrophin is required for the formation of stable muscle attachments in the zebrafish embryo. Development (Cambridge, England). 130(23):5851-5860
Cortés, F., Daggett, D., Bryson-Richardson, R.J., Neyt, C., Maule, J., Gautier, P., Hollway, G.E., Keenan, D., and Currie, P.D. (2003) Cadherin-mediated differential cell adhesion controls slow muscle cell migration in the developing zebrafish myotome. Developmental Cell. 5(6):865-876
Bassett, D.I. and Currie, P.D. (2003) The zebrafish as a model for muscular dystrophy and congenital myopathy. Human molecular genetics. (Suppl. 2) 12:R265-R270
Logan, D.W., Bryson-Richardson, R.J., Taylor, M.S., Currie, P., and Jackson, I.J. (2003) Sequence characterization of teleost fish melanocortin receptors. Annals of the New York Academy of Sciences. 994:319-330
Herzog, W., Zeng, X., Lele, Z., Sonntag, C., Ting, J.W., Chang, C.Y., and Hammerschmidt, M. (2003) Adenohypophysis formation in the zebrafish and its dependence on sonic hedgehog. Developmental Biology. 254(1):36-49
Logan, D.W., Bryson-Richardson, R.J., Pagan, K.E., Taylor, M.S., Currie, P.D., and Jackson, I.J. (2003) The structure and evolution of the melanocortin and MCH receptors in fish and mammals. Genomics. 81(2):184-191
Hammond, K.L., Hill, R.E., Whitfield, T.T., and Currie, P.D. (2002) Isolation of three zebrafish dachshund homologues and their expression in sensory organs, the central nervous system and pectoral fin buds. Mechanisms of Development. 112(1-2):183-189
Brennan, C., Amacher, S.L., and Currie, P.D. (2002) Somitogenesis. Results and problems in cell differentiation. 40:271-297
Nikolic, V., Hollway, G., Adams, R.J., Kelsh, R.N., and Currie, P. (2002) Characterization of a zebrafish pigment pattern mutant, choker. Pigm. Cell Res.. 15(9):27-28
Haines, L. and Currie, P.D. (2001) Morphogenesis and evolution of vertebrate appendicular muscle. Journal of anatomy. 199(1-2):205-209
Neyt, C., Jagla, K., Thisse, C., Thisse, B., Haines, L., and Currie, P.D. (2000) Evolutionary origins of vertebrate appendicular muscle. Nature. 408(6808):82-86
Norris, W., Neyt, C., Ingham, P.W., and Currie, P.D. (2000) Slow muscle induction by Hedgehog signalling in vitro. Journal of Cell Science. 113(Pt.15):2695-2703
Hollway, G.E. and Currie, P.D. (2000) Zebrafish earn their stripes. Trends in genetics : TIG. 16(5):236
Lewis, K.E., Currie, P.D., Roy, S., Schauerte, H., Haffter, P., and Ingham, P.W. (1999) Control of muscle cell-type specification in the zebrafish embryo by hedgehog signalling. Developmental Biology. 216(2):469-480
Currie, P.D., Schilling, T.F., and Ingham, P.W. (1999) Small-scale marker-based screening for mutations in zebrafish development. Methods in molecular biology (Clifton, N.J.). 97:441-460
Currie P.D. (1998) Hedgehogs escape from Pandora's box. Journal of molecular medicine (Berlin, Germany). 76:421-433
Currie P.D. and Ingham P.W. (1998) The generation and interpretation of positional information within the vertebrate myotome. Mechanisms of Development. 73:3-21
Blagden, C.S., P.D. Currie, P.W. Ingham, and S.M. Hughes (1997) Notochord induction of zebrafish slow muscle mediated by Sonic hedgehog. Genes & Development. 11(17):2163-2175
Currie, P.D. (1996) Zebrafish genetics: Mutant cornucopia. Current biology : CB. 6(12):1548-1552
Currie, P.D. and Ingham, P.W. (1996) Induction of a specific muscle cell type by a hedgehog-like protein in zebrafish. Nature. 382(6590):452-455