ZFIN ID: ZDB-LAB-120305-2
Kondo Lab
PI/Director: Kondo, Shigeru
Co-PI / Senior
Researcher:
Watanabe, Masakatsu
Contact Person: Watanabe, Masakatsu
Email: watanabe-m@fbs.osaka-u.ac.jp
URL:
Address: Graduate School of Frontier Biosciences Osaka University 1-3, Yamadaoka, Suita Osaka 565-0871 Japan
Country: Japan
Phone: +81-6-6879-7997
Fax: +81-6-6879-7977
Line Designation: ou


GENOMIC FEATURES ORIGINATING FROM THIS LAB
Show first 50 of 55 genomic features


STATEMENT OF RESEARCH INTERESTS


LAB MEMBERS


ZEBRAFISH PUBLICATIONS OF LAB MEMBERS
Ramli, ., Aramaki, T., Watanabe, M., Kondo, S. (2024) Piezo1 mutant zebrafish as a model of idiopathic scoliosis. Frontiers in genetics. 14:13213791321379
Nakagawa, H., Aramaki, T., Kondo, S., Kuroda, J. (2023) Collagen9a1c localizes to collagen fibers called actinotrichia in zebrafish fins. microPublication. Biology. 2023:
Watanabe, M. (2023) Fish-specific N-terminal domain sequence in Connexin 39.4 plays an important role in zebrafish stripe formation by regulating the opening and closing of gap junctions and hemichannels. Biochimica et biophysica acta. General subjects. 1867(5):130342
Nakagawa, H., Kuroda, J., Aramaki, T., Kondo, S. (2021) Mechanical role of actinotrichia in shaping the caudal fin of zebrafish. Developmental Biology. 481:52-63
Kuroda, J., Itabashi, T., Iwane, A.H., Aramaki, T., Kondo, S. (2020) The Physical Role of Mesenchymal Cells Driven by the Actin Cytoskeleton Is Essential for the Orientation of Collagen Fibrils in Zebrafish Fins. Frontiers in cell and developmental biology. 8:580520
Usui, Y., Aramaki, T., Kondo, S., Watanabe, M. (2019) The minimal gap-junction network among melanophores and xanthophores required for stripe-pattern formation in zebrafish. Development (Cambridge, England). 146(22):
Denis, J.F., Diagbouga, M.R., Molica, F., Hautefort, A., Linnerz, T., Watanabe, M., Lemeille, S., Bertrand, J.Y., Kwak, B.R. (2019) KLF4-Induced Connexin40 Expression Contributes to Arterial Endothelial Quiescence. Frontiers in Physiology. 10:80
Aramaki, T., Kondo, S. (2018) Method for disarranging the pigment pattern of zebrafish by optogenetics. Developmental Biology. 460(1):12-19
Kuroda, J., Iwane, A.H., Kondo, S. (2018) Roles of basal keratinocytes in actinotrichia formation. Mechanisms of Development. 153:54-63
Usui, Y., Kondo, S., Watanabe, M. (2018) Melanophore multinucleation pathways in zebrafish. Development, growth & differentiation. 60(7):454-459
Sawada, R., Aramaki, T., Kondo, S. (2018) Flexibility of pigment cell behavior permits the robustness of skin pattern formation. Genes to cells : devoted to molecular & cellular mechanisms. 23(7):537-545
Chanson, M., Watanabe, M., O'Shaughnessy, E.M., Zoso, A., Martin, P.E. (2018) Connexin Communication Compartments and Wound Repair in Epithelial Tissue. International Journal of Molecular Sciences. 19(5)
Watanabe, M. (2017) Gap Junction in the Teleost Fish Lineage: Duplicated Connexins May Contribute to Skin Pattern Formation and Body Shape Determination. Frontiers in cell and developmental biology. 5:13
Kondo, S. (2017) An updated kernel-based Turing model for studying the mechanisms of biological pattern formation. Journal of theoretical biology. 414:120-127
Misu, A., Yamanaka, H., Aramaki, T., Kondo, S., Skerrett, I.M., Iovine, M.K., Watanabe, M. (2016) Two different functions of Connexin43 confer two different bone phenotypes in zebrafish. The Journal of biological chemistry. 291(24):12601-11
Watanabe, M., Sawada, R., Aramaki, T., Skerrett, I.M., Kondo, S. (2016) The physiological characterization of Connexin41.8 and Connexin39.4, which are involved in the stripe pattern formation of zebrafish. The Journal of biological chemistry. 291(3):1053-63
Watanabe, M., Kondo, S. (2015) Is pigment patterning in fish skin determined by the Turing mechanism?. Trends in genetics : TIG. 31(2):88-96
Kondo, S., Watanabe, M. (2015) Black, yellow or silver. Who leads skin pattern formation?. Pigment cell & melanoma research. 28(1):2-4
Yamanaka, H., Kondo, S. (2015) Rotating pigment cells exhibit an intrinsic chirality. Genes to cells : devoted to molecular & cellular mechanisms. 20(1):29-35
Inoue, S., Kondo, S., Parichy, D.M., Watanabe, M. (2014) Tetraspanin 3c requirement for pigment cell interactions and boundary formation in zebrafish adult pigment stripes. Pigment cell & melanoma research. 27:190-200
Yamanaka, H., and Kondo, S. (2014) In vitro analysis suggests that difference in cell movement during direct interaction can generate various pigment patterns in vivo. Proceedings of the National Academy of Sciences of the United States of America. 111(5):1867-1872
Hamada, H., Watanabe, M., Lau, H.E., Nishida, T., Hasegawa, T., Parichy, D.M., and Kondo, S. (2014) Involvement of Delta/Notch signaling in zebrafish adult pigment stripe patterning. Development (Cambridge, England). 141(2):318-324
Watanabe, M., and Kondo, S. (2012) Changing clothes easily: connexin41.8 regulates skin pattern variation. Pigment cell & melanoma research. 25(3):326-330
Inaba, M., Yamanaka, H., and Kondo, S. (2012) Pigment pattern formation by contact-dependent depolarization. Science (New York, N.Y.). 335(6069):677
Eom, D.S., Inoue, S., Patterson, L.B., Gordon, T.N., Slingwine, R., Kondo, S., Watanabe, M., and Parichy, D.M. (2012) Melanophore Migration and Survival during Zebrafish Adult Pigment Stripe Development Require the Immunoglobulin Superfamily Adhesion Molecule Igsf11. PLoS Genetics. 8(8):e1002899
Watanabe, M., Watanabe, D., and Kondo, S. (2012) Polyamine sensitivity of gap junctions is required for skin pattern formation in zebrafish. Scientific Reports. 2:473
Nakamasu, A., Takahashi, G., Kanbe, A., and Kondo, S. (2009) Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. Proceedings of the National Academy of Sciences of the United States of America. 106(21):8429-8434
Kondo, S., Iwashita, M., and Yamaguchi, M. (2009) How animals get their skin patterns: fish pigment pattern as a live Turing wave. The International journal of developmental biology. 53(5-6):851-856
Takahashi, G., and Kondo, S. (2008) Melanophores in the stripes of adult zebrafish do not have the nature to gather, but disperse when they have the space to move. Pigment cell & melanoma research. 21(6):677-686
Watanabe, M., Hiraide, K., and Okada, N. (2007) Functional diversification of kir7.1 in cichlids accelerated by gene duplication. Gene. 399(1):46-52
Yamaguchi, M., Yoshimoto, E., and Kondo, S. (2007) Pattern regulation in the stripe of zebrafish suggests an underlying dynamic and autonomous mechanism. Proceedings of the National Academy of Sciences of the United States of America. 104(12):4790-4793
Iwashita, M., Watanabe, M., Ishii, M., Chen, T., Johnson, S.L., Kurachi, Y., Okada, N., and Kondo, S. (2006) Pigment pattern in jaguar/obelix zebrafish is caused by a Kir7.1 mutation: implications for the regulation of melanosome movement. PLoS Biology. 2(11):e197
Watanabe, M., Iwashita, M., Ishii, M., Kurachi, Y., Kawakami, A., Kondo, S., and Okada, N. (2006) Spot pattern of leopard Danio is caused by mutation in the zebrafish connexin41.8 gene. EMBO reports. 7(9):893-897
Horikawa, K., Ishimatsu, K., Yoshimoto, E., Kondo, S., and Takeda, H. (2006) Noise-resistant and synchronized oscillation of the segmentation clock. Nature. 441(7094):719-723
Hirata, M., Nakamura, K.I., and Kondo, S. (2005) Pigment cell distributions in different tissues of the zebrafish, with special reference to the striped pigment pattern. Developmental Dynamics : an official publication of the American Association of Anatomists. 234(2):293-300
Hirata, M., Nakamura, K.I., Kanemaru, T., Shibata, Y., and Kondo, S. (2003) Pigment cell organization in the hypodermis of zebrafish. Developmental Dynamics : an official publication of the American Association of Anatomists. 227(4):497-503
Kondo, S. (2002) The reaction-diffusion system: a mechanism for autonomous pattern formation in the animal skin. Genes to cells : devoted to molecular & cellular mechanisms. 7(6):535-541
Asai, R., Taguchi, E., Kume, Y., Saito, M., and Kondo, S. (1999) Zebrafish Leopard gene as a component of the putative reaction-diffusion system. Mechanisms of Development. 89(1-2):87-92