ZFIN ID: ZDB-LAB-110706-1
Trapani Lab
PI/Director: Trapani, Josef
Contact Person: Trapani, Josef
Email: jtrapani@amherst.edu
URL: http://www.trapanilab.com/
Address: McGuire Life Sciences Building Amherst College Biology Dept. Amherst MA 01002
Country: United States
Phone: 413-542-5523
Line Designation: ahc

Show all 1 genomic features

How is sensory information transformed into meaningful neuronal information?

Research in our lab is aimed at answering this question by understanding the process of sensory transduction. In the auditory and vestibular systems of vertebrates, the hair cell is the specialized mechanoreceptor that transforms mechanical stimuli, such as sound waves, into electrical signals. For fish and amphibians, hair cells are also utilized by a third sensory system called the lateral line. In the lateral line, hair cells are arranged into rosette structures called neuromasts, which are located at regular intervals around the head and trunk of the animal. These neuromasts convey information about the movements of water around the animal. This sense of “distant touch” is important for behaviors such as shoaling and schooling, predator avoidance, and detection of prey.

Currently, we are using a combination of fluorescence microscopy and electrophysiology to study hair cells and the lateral line in zebrafish. Transgenic zebrafish allow us to use fluorescence to visualize specific cells and proteins involved in the lateral line circuit. We are also able to utilize mutant zebrafish lines to study what happens when the function of a specific protein has been disrupted. Electrophysiological recordings of both hair cell and afferent nerve activity allow us to examine sensory transduction in intact larval zebrafish. These techniques, combined with studies of zebrafish behavior will further our understanding of how an organism interacts with the world around it.


Song, S., Lee, J.A., Kiselev, I., Iyengar, V., Trapani, J.G., Tania, N. (2018) Mathematical Modeling and Analyses of Interspike-Intervals of Spontaneous Activity in Afferent Neurons of the Zebrafish Lateral Line. Scientific Reports. 8:14851
Sheets, L., He, X.J., Olt, J., Schreck, M., Petralia, R.S., Wang, Y.X., Zhang, Q., Beirl, A., Nicolson, T., Marcotti, W., Trapani, J.G., Kindt, K.S. (2017) Enlargement of ribbons in zebrafish hair cells increases calcium currents, but disrupts afferent spontaneous activity and timing of stimulus onset. The Journal of neuroscience : the official journal of the Society for Neuroscience. 37(26):6299-6313
Troconis, E.L., Ordoobadi, A.J., Sommers, T.F., Aziz-Bose, R., Carter, A.R., Trapani, J.G. (2017) Intensity-dependent timing and precision of startle response latency in larval zebrafish. The Journal of physiology. 595(1):265-282
Kruger, M., Boney, R., Ordoobadi, A.J., Sommers, T.F., Trapani, J.G., Coffin, A.B. (2016) Natural Bizbenzoquinoline Derivatives Protect Zebrafish Lateral Line Sensory Hair Cells from Aminoglycoside Toxicity. Frontiers in Cellular Neuroscience. 10:83
Olt, J., Ordoobadi, A.J., Marcotti, W., Trapani, J.G. (2016) Physiological recordings from the zebrafish lateral line. Methods in cell biology. 133:253-279
Toro, C., Trapani, J.G., Pacentine, I., Maeda, R., Sheets, L., Mo, W., Nicolson, T. (2015) Dopamine Modulates the Activity of Sensory Hair Cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35(50):16494-16503
Pujol-Martí, J., Faucherre, A., Aziz-Bose, R., Asgharsharghi, A., Colombelli, J., Trapani, J.G., López-Schier, H. (2014) Converging Axons Collectively Initiate and Maintain Synaptic Selectivity in a Constantly Remodeling Sensory Organ. Current biology : CB. 24(24):2968-74
Monesson-Olson, B.D., Troconis, E.L., Trapani, J.G. (2014) Recording Field Potentials From Zebrafish Larvae During Escape Responses. Journal of undergraduate neuroscience education : JUNE : a publication of FUN, Faculty for Undergraduate Neuroscience. 13:A52-A58
Monesson-Olson, B.D., Browning-Kamins, J., Aziz-Bose, R., Kreines, F., Trapani, J.G. (2014) Optical stimulation of zebrafish hair cells expressing channelrhodopsin-2. PLoS One. 9:e96641
Einhorn, Z., Trapani, J.G., Liu, Q., and Nicolson, T. (2012) Rabconnectin3alpha promotes stable activity of the H+ pump on synaptic vesicles in hair cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 32(32):11144-11156
Sheets, L., Trapani, J.G., Mo, W., Obholzer, N., and Nicolson, T. (2011) Ribeye is required for presynaptic CaV1.3a channel localization and afferent innervation of sensory hair cells. Development (Cambridge, England). 138(7):1309-1319
Trapani, J.G., and Nicolson, T. (2011) Mechanism of spontaneous activity in afferent neurons of the zebrafish lateral-line organ. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31(5):1614-1623
Trapani, J.G., and Nicolson, T. (2010) Chapter 8 - Physiological recordings from zebrafish lateral-line hair cells and afferent neurons. Meth. Cell. Biol.. 100:219-231
Trapani, J.G., Obholzer, N., Mo, W., Brockerhoff, S.E., and Nicolson, T. (2009) Synaptojanin1 is required for temporal fidelity of synaptic transmission in hair cells. PLoS Genetics. 5(5):e1000480
Obholzer, N., Wolfson, S., Trapani, J.G., Mo, W., Nechiporuk, A., Busch-Nentwich, E., Seiler, C., Sidi, S., Söllner, C., Duncan, R.N., Boehland, A., and Nicolson, T. (2008) Vesicular glutamate transporter 3 is required for synaptic transmission in zebrafish hair cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28(9):2110-2118