ZFIN ID: ZDB-FISH-150901-5789
Fish name: w32Tg
Genotype: w32Tg
Targeting Reagent: none
HUMAN DISEASE MODELED by w32Tg
No data available
GENE EXPRESSION
Gene expression in w32Tg
RNA expression
Expressed Gene Structure Conditions Figures
ackr3b standard conditions Fig. 6 with image from Aman et al., 2008
heat shock Fig. 5 with image from Breau et al., 2013
Fig. S4 with image from McGraw et al., 2011
atoh7 control Fig. 5 with image from Young et al., 2019
heat shock Fig. 5 with image from Young et al., 2019
axin2 control Fig. S3 with image from Felber et al., 2015
heat shock Fig. S3 with image from Felber et al., 2015
bambia heat shock Fig. 1 with image from Holly et al., 2014
bmp2b heat shock Fig. 6 with image from Holly et al., 2014
bmp4 heat shock Fig. 6 with image from Holly et al., 2014
ccnd1 control Fig. 4 from Zhai et al., 2017
heat shock Fig. 4 from Zhai et al., 2017
ccne2 control Fig. 4 from Zhai et al., 2017
heat shock Fig. 4 from Zhai et al., 2017
col1a2 heat shock Fig. 3 with imageFig. S2 with image from Felber et al., 2015
col10a1a heat shock Fig. 3 with image from Felber et al., 2015
cxcr4b standard conditions Fig. 6 with image from Aman et al., 2008
heat shock Fig. 5 with image from Breau et al., 2013
Fig. S4 with image from McGraw et al., 2011
etv4 heat shock Fig. 4 with image from Venero Galanternik M. et al., 2016
Fig. 4 with image from Venero Galanternik et al., 2015
Fig. S4 with image from McGraw et al., 2011
eya1 heat shock Fig. 4 with image from McGraw et al., 2011
fabp10a control Fig. 6 from Zhai et al., 2017
chemical treatment: phosphatidylcholine Fig. 6 from Zhai et al., 2017
heat shock Fig. 6 from Zhai et al., 2017
fgf3 heat shock Fig. 6 with image from Felber et al., 2015
Fig. 4 with image from Venero Galanternik et al., 2015
fgf8a heat shock Fig. 5 with image from Roberson et al., 2017
fgf10a heat shock Fig. S4 with image from McGraw et al., 2011
gdf6a heat shock Fig. 6 with image from Holly et al., 2014
hhex heat shock Fig. 4 with image from Lancman et al., 2013
hoxb6a heat shock Fig. 5 with image from Breau et al., 2013
hoxb8a heat shock Fig. 5 with image from Breau et al., 2013
il17rd heat shock Fig. 6 with image from Felber et al., 2015
lama5 heat shock Fig. 7 with image from Nagendran et al., 2015
lamb1a heat shock Fig. 7 with image from Nagendran et al., 2015
lamb2 heat shock Fig. 7 with image from Nagendran et al., 2015
lamb2l heat shock Fig. 7 with image from Nagendran et al., 2015
lamc1 heat shock Fig. 7 with image from Nagendran et al., 2015
lef1 control Fig. 7 with image from Lin et al., 2016
heat shock Fig. 7 with image from Lin et al., 2016
Fig. 4 with image from Venero Galanternik M. et al., 2016
Fig. 4 with image from Venero Galanternik et al., 2015
Fig. 5 with image from Breau et al., 2013
Fig. 3 with image from Wieffer et al., 2013
Fig. S4 with image from McGraw et al., 2011
lypd6 heat shock Fig. 1 with image from Özhan et al., 2013
myca control Fig. 4 from Zhai et al., 2017
heat shock Fig. 4 from Zhai et al., 2017
Fig. 5 with image from Lancman et al., 2013
myl7 control Fig. 5 with image from Sorrell et al., 2013
heat shock Fig. 5 with image from Sorrell et al., 2013
myod1 standard conditions Fig. 8 with image from Martin et al., 2008
heat shock Fig. 8 with image from Martin et al., 2008
nkx2.5 control Fig. 12 with image from Novikov et al., 2013
heat shock Fig. 12 with image from Novikov et al., 2013
pcdh10b heat shock Fig. 5 with image from Peukert et al., 2011
pdx1 heat shock Fig. 4 with image from Lancman et al., 2013
prss1 control Fig. 6 from Zhai et al., 2017
chemical treatment: phosphatidylcholine Fig. 6 from Zhai et al., 2017
heat shock Fig. 6 from Zhai et al., 2017
runx2a heat shock Fig. 4 with image from Felber et al., 2015
runx2b heat shock Fig. 4 with image from Felber et al., 2015
si:ch211-241e1.3 heat shock Fig. 7 with image from Nagendran et al., 2015
sox17 heat shock Fig. 3 with image from Shin et al., 2012
sox32 standard conditions Fig. 3 with image from Shin et al., 2012
sp7 heat shock Fig. 4 with imageFig. 6 with image from Felber et al., 2015
spry1 heat shock Fig. 6 with image from Felber et al., 2015
spry4 heat shock Fig. 6 with image from Felber et al., 2015
stmn4 control Fig. 7 with image from Lin et al., 2016
heat shock Fig. 7 with image from Lin et al., 2016
tbx5a heat shock Fig. 1 with image from Holly et al., 2014
Fig. S3 with image from Wieffer et al., 2013
tbxta standard conditions Fig. 12 with image from Novikov et al., 2013
Fig. 8 with image from Martin et al., 2008
heat shock Fig. 12 with image from Novikov et al., 2013
Fig. 8 with image from Martin et al., 2008
tbxtb standard conditions Fig. 8 with image from Martin et al., 2008
heat shock Fig. 8 with image from Martin et al., 2008
tcf4 heat shock Fig. 3 with image from Wieffer et al., 2013
tcf7 heat shock Fig. 3 with image from Wieffer et al., 2013
tpbga heat shock Fig. 1 with image from Kagermeier-Schenk et al., 2011
tshz2 heat shock, amputation Fig. 3 with image from Reuter et al., 2015
vax2 heat shock Fig. 1 with image from Holly et al., 2014
wif1 control Fig. S3 with image from Felber et al., 2015
heat shock Fig. S3 with image from Felber et al., 2015
zic1 control Fig. 2 with image from Liu et al., 2013
heat shock Fig. 2 with image from Liu et al., 2013
PHENOTYPE
Phenotype in w32Tg
Phenotype Conditions Figures
canonical Wnt signaling pathway decreased process quality, abnormal heat shock Fig. 12 with image from Novikov et al., 2013
cardioblast cell fate specification process quality, normal heat shock Fig. 12 with image from Novikov et al., 2013
cell proliferation in forebrain decreased occurrence, abnormal heat shock Fig. 3 with image from Wang et al., 2012
ceratobranchial 5 tooth ossification decreased occurrence, abnormal heat shock Fig. 3 with image from Felber et al., 2015
diencephalon dorsal region fgf8a expression increased distribution, abnormal heat shock Fig. 5 with image from Roberson et al., 2017
dorsal thalamus cellular quality, abnormal heat shock Fig. 5 with image from Peukert et al., 2011
embryonic medial fin morphogenesis decreased process quality, abnormal heat shock Fig. 3 with image from Nagendran et al., 2015
ependymal cell motile cilium assembly decreased occurrence, abnormal heat shock Fig. 1 with image from Zhang et al., 2020
ependymal cell motile cilium assembly normal occurrence, normal control Fig. 1 with image from Zhang et al., 2020
epidermal basal stratum canonical Wnt signaling pathway decreased process quality, abnormal heat shock Fig. 3 with imageFig. 7 with image from Nagendran et al., 2015
epidermal basal stratum ecto-epithelial cell oblong, abnormal heat shock Fig. 3 with image from Nagendran et al., 2015
epidermal basal stratum epithelial cell morphogenesis decreased process quality, abnormal heat shock Fig. 3 with image from Nagendran et al., 2015
hepaticobiliary system development disrupted, abnormal heat shock Fig. 4 with image from Lancman et al., 2013
hyomandibula ossification decreased occurrence, abnormal heat shock Fig. 3 with image from Felber et al., 2015
hypothalamus has extra parts of type neuronal stem cell, abnormal heat shock Fig. 3 with image from Wang et al., 2012
hypothalamus has extra parts of type radial glial cell, abnormal heat shock Fig. 3 with image from Wang et al., 2012
hypothalamus has fewer parts of type serotonergic neuron, abnormal heat shock Fig. 3 with image from Wang et al., 2012
hypothalamus has fewer parts of type GABAergic neuron, abnormal heat shock Fig. 3 with image from Wang et al., 2012
intestine ccnd1 expression decreased amount, abnormal heat shock Fig. 4 from Zhai et al., 2017
intestine ccne2 expression decreased amount, abnormal heat shock Fig. 4 from Zhai et al., 2017
intestine myca expression decreased amount, abnormal heat shock Fig. 4 from Zhai et al., 2017
intestine decreased size, abnormal heat shock Fig. 4 from Zhai et al., 2017
intestine size, normal control Fig. 4 from Zhai et al., 2017
liver ccne2 expression decreased amount, abnormal heat shock Fig. 4 from Zhai et al., 2017
liver myca expression decreased amount, abnormal heat shock Fig. 4 from Zhai et al., 2017
liver ccnd1 expression decreased amount, abnormal heat shock Fig. 4 from Zhai et al., 2017
liver decreased size, abnormal heat shock Fig. 4Fig. 6 from Zhai et al., 2017
liver decreased size, abnormal heat shock, chemical treatment: phosphatidylcholine Fig. 6 from Zhai et al., 2017
liver increased size, abnormal chemical treatment: phosphatidylcholine Fig. 6 from Zhai et al., 2017
liver present, normal heat shock Fig. 3 with image from Shin et al., 2012
liver size, normal control Fig. 4 from Zhai et al., 2017
median fin fold epithelial cell proliferation increased occurrence, abnormal heat shock Fig. 5 with image from Nagendran et al., 2015
median fin fold laminin complex decreased amount, abnormal heat shock Fig. 7 with image from Nagendran et al., 2015
midbrain dorsal region stmn4 expression decreased amount, abnormal heat shock Fig. 7 with image from Lin et al., 2016
midbrain dorsal region lef1 expression decreased amount, abnormal heat shock Fig. 7 with image from Lin et al., 2016
myocardial precursor physical object quality, normal heat shock Fig. 12 with image from Novikov et al., 2013
neural precursor cell proliferation decreased occurrence, abnormal heat shock Fig. 3 with image from Wang et al., 2012
neuroectoderm anterior region increased size, abnormal heat shock Fig. 2 with image from Liu et al., 2013
neuroectoderm anterior region size, normal control Fig. 2 with image from Liu et al., 2013
neurogenesis disrupted, abnormal heat shock Fig. 3 with image from Wang et al., 2012
neuronal stem cell undifferentiated, abnormal heat shock Fig. 3 with image from Wang et al., 2012
opercle sp7 expression absent, abnormal heat shock Fig. 6 with image from Felber et al., 2015
opercle sp7 expression decreased amount, abnormal heat shock Fig. 4 with image from Felber et al., 2015
opercle col1a2 expression decreased amount, abnormal heat shock Fig. 3 with image from Felber et al., 2015
opercle col10a1a expression decreased amount, abnormal heat shock Fig. 3 with image from Felber et al., 2015
opercle ossification decreased occurrence, abnormal heat shock Fig. 3 with image from Felber et al., 2015
optic cup neuron atoh7 expression increased amount, abnormal heat shock Fig. 5 with image from Young et al., 2019
optic vesicle neurogenesis increased occurrence, abnormal heat shock Fig. 5 with image from Young et al., 2019
ossification decreased occurrence, abnormal heat shock Fig. 3 with image from Felber et al., 2015
pancreas myca expression decreased amount, abnormal heat shock Fig. 4 from Zhai et al., 2017
pancreas ccnd1 expression decreased amount, abnormal heat shock Fig. 4 from Zhai et al., 2017
pancreas ccne2 expression decreased amount, abnormal heat shock Fig. 4 from Zhai et al., 2017
pancreas decreased size, abnormal heat shock Fig. 4Fig. 6 from Zhai et al., 2017
pancreas decreased size, abnormal heat shock, chemical treatment: phosphatidylcholine Fig. 6 from Zhai et al., 2017
pancreas increased size, abnormal chemical treatment: phosphatidylcholine Fig. 6 from Zhai et al., 2017
pancreas size, normal control Fig. 4 from Zhai et al., 2017
pancreas development disrupted, abnormal heat shock Fig. 4 with image from Lancman et al., 2013
pectoral fin development disrupted, abnormal heat shock Fig. 3 with image from Wieffer et al., 2013
pharyngeal arch 3-7 spry4 expression decreased amount, abnormal heat shock Fig. 6 with image from Felber et al., 2015
pharyngeal arch 3-7 axin2 expression decreased amount, abnormal heat shock Fig. S3 with image from Felber et al., 2015
pharyngeal arch 3-7 fgf3 expression decreased amount, abnormal heat shock Fig. 6 with image from Felber et al., 2015
pharyngeal arch 3-7 il17rd expression decreased amount, abnormal heat shock Fig. 6 with image from Felber et al., 2015
pharyngeal arch 3-7 spry1 expression decreased amount, abnormal heat shock Fig. 6 with image from Felber et al., 2015
pharyngeal arch 3-7 wif1 expression decreased amount, abnormal heat shock Fig. S3 with image from Felber et al., 2015
posterior lateral line neuromast decreased amount, abnormal heat shock Fig. 4 with image from Wada et al., 2013
posterior lateral line primordium fgf3 expression absent, abnormal heat shock Fig. 4 with image from Venero Galanternik et al., 2015
posterior lateral line primordium lef1 expression decreased amount, abnormal heat shock Fig. 4 with image from Venero Galanternik M. et al., 2016
posterior lateral line primordium etv4 expression decreased amount, abnormal heat shock Fig. 4 with image from Venero Galanternik M. et al., 2016
posterior lateral line primordium etv4 expression decreased distribution, abnormal heat shock Fig. 4 with image from Venero Galanternik et al., 2015
posterior lateral line primordium lef1 expression decreased distribution, abnormal heat shock Fig. 4 with image from Venero Galanternik et al., 2015
posterior lateral line primordium fgf3 expression spatial pattern, ameliorated heat shock, chemical treatment by environment: sodium chlorate Fig. 4 with image from Venero Galanternik et al., 2015
posterior lateral line primordium lef1 expression spatial pattern, ameliorated heat shock, chemical treatment by environment: sodium chlorate Fig. 4 with image from Venero Galanternik et al., 2015
posterior lateral line primordium etv4 expression spatial pattern, ameliorated heat shock, chemical treatment by environment: sodium chlorate Fig. 4 with image from Venero Galanternik et al., 2015
protein kinase B signaling decreased process quality, abnormal heat shock Fig. 6 from Lee et al., 2014
spinal cord has fewer parts of type ependymal cell motile cilium, abnormal heat shock Fig. 1 with image from Zhang et al., 2020
spinal cord has normal numbers of parts of type ependymal cell motile cilium, normal control Fig. 1 with image from Zhang et al., 2020
spinal cord ependymal cell ab1-tuba labeling absent, abnormal heat shock Fig. 1 with image from Zhang et al., 2020
thalamus development decreased process quality, abnormal heat shock Fig. 5 with image from Peukert et al., 2011
whole organism lacks all parts of type pectoral fin, abnormal heat shock Fig. S3 with image from Wieffer et al., 2013
whole organism lacks parts or has fewer parts of type pectoral fin, abnormal heat shock Fig. 3 with image from Wieffer et al., 2013
whole organism anterior-posterior axis decreased length, abnormal heat shock Fig. 3 with image from Wieffer et al., 2013
Wnt signaling pathway decreased occurrence, abnormal heat shock Fig. 5 with image from Peukert et al., 2011
Wnt signaling pathway decreased process quality, abnormal heat shock Fig. 6 from Lee et al., 2014

CITATIONS  (56)