header logo image header logo text
Downloads Login
Research
General Information
ZIRC
ZFIN ID: ZDB-FISH-150901-2109
Fish name: kca3Tg; kca4Tg
Genotype: kca3Tg; kca4Tg
Targeting Reagent: none
HUMAN DISEASE MODELED by kca3Tg; kca4Tg
No data available
GENE EXPRESSION
Gene expression in kca3Tg; kca4Tg
RNA expression
Expressed Gene Structure Conditions Figures
aldh1a2 physical alteration: anatomical structure, heat shock Fig. 5 with image from Münch et al., 2013
and1 physical alteration: anatomical structure, heat shock Fig. 5 with image from Grotek et al., 2013
ascl1a control Fig. 5 with image from Wan et al., 2012
ascl1b heat shock Fig. 5 with image from Ghaye et al., 2015
barx1 heat shock Fig. 3 with image from Barske et al., 2016
cbfb heat shock Fig. 7 from Bresciani et al., 2014
cga heat shock Fig. 5 with image from Dutta et al., 2008
col1a2 physical alteration: anatomical structure Fig. 6 with image from Grotek et al., 2013
col10a1a physical alteration: anatomical structure Fig. 6 with image from Grotek et al., 2013
dlx2a heat shock Fig. 8 with image from Barske et al., 2016
etv4 physical alteration: anatomical structure, heat shock Fig. 5 with image from Grotek et al., 2013
gh1 heat shock Fig. 5 with image from Dutta et al., 2008
hbegfa control Fig. 5 with image from Wan et al., 2012
her4.1 control Fig. 6 with image from Coolen et al., 2012
heat shock Fig. 6 with image from Coolen et al., 2012
Fig. 1 from Yeo et al., 2007
her6 physical alteration: anatomical structure, heat shock Fig. 4 with image from Münch et al., 2013
her15.2 physical alteration: anatomical structure, heat shock Fig. 4 with image from Münch et al., 2013
ilf2 physical alteration: anatomical structure, heat shock Fig. 5 with image from Grotek et al., 2013
inhbaa physical alteration: anatomical structure, heat shock Fig. 5 with image from Grotek et al., 2013
lef1 physical alteration: anatomical structure, heat shock Fig. 5 with image from Grotek et al., 2013
lhx3 heat shock Fig. 3 with image from Dutta et al., 2008
msx1a physical alteration: anatomical structure, heat shock Fig. 5 with image from Münch et al., 2013
msx1b physical alteration: anatomical structure, heat shock Fig. 5 with image from Münch et al., 2013
msx2b physical alteration: anatomical structure, heat shock Fig. 5 with image from Grotek et al., 2013
myb control Fig. 6 from Gerri et al., 2018
Fig. 4 with image from Carroll et al., 2014
chemical treatment by environment: 17beta-estradiol Fig. 7 from Konantz et al., 2016
Fig. 4 with image from Carroll et al., 2014
heat shock, chemical treatment by environment: 17beta-estradiol Fig. 6 from Gerri et al., 2018
Fig. 2 with image from Lin et al., 2015
Fig. 3 with image from Zhang et al., 2015
Fig. 7 from Bresciani et al., 2014
Fig. 4 with image from Carroll et al., 2014
Fig. 6 from Lee et al., 2014
Fig. 4 from Burns et al., 2009
neurog1 control Fig. 6 with image from Coolen et al., 2012
heat shock Fig. 6 with image from Coolen et al., 2012
nkx6.1 heat shock Fig. 5 with image from Ghaye et al., 2015
nr5a1a heat shock Fig. 11 with image from Kroeger et al., 2017
odf3b heat shock Fig. 7 with image from Li et al., 2014
pcna heat shock Fig. 6 from Chapouton et al., 2010
pomca heat shock Fig. 5 with image from Dutta et al., 2008
prl heat shock Fig. 3 with imageFig. 5 with image from Dutta et al., 2008
prrx1a heat shock Fig. 8 with image from Barske et al., 2016
prrx1b heat shock Fig. 8 with image from Barske et al., 2016
runx1 standard conditions Fig. 6 from Gerri et al., 2018
Fig. 4 with image from Carroll et al., 2014
Fig. 3 from Kim et al., 2014
chemical treatment by environment: 17beta-estradiol Fig. 7 from Konantz et al., 2016
Fig. 4 with image from Carroll et al., 2014
heat shock, chemical treatment by environment: 17beta-estradiol Fig. 6 from Gerri et al., 2018
Fig. 7 from Bresciani et al., 2014
Fig. 4 with image from Carroll et al., 2014
Fig. 3 from Kim et al., 2014
Fig. S7 from Kobayashi et al., 2014
Fig. 4 from Burns et al., 2009
runx2b physical alteration: anatomical structure Fig. 6 with image from Grotek et al., 2013
s100b heat shock Fig. 6 from Chapouton et al., 2010
shha physical alteration: anatomical structure Fig. 6 with image from Grotek et al., 2013
smyhc1 heat shock Fig. 7 with image from Li et al., 2014
stc1 heat shock Fig. 9 with image from Drummond et al., 2017
tcf7 physical alteration: anatomical structure, heat shock Fig. 6 with image from Münch et al., 2013
tshba heat shock Fig. 5 with image from Dutta et al., 2008
ttk physical alteration: anatomical structure, heat shock Fig. 5 with image from Grotek et al., 2013
wnt5b physical alteration: anatomical structure, heat shock Fig. 5 with image from Grotek et al., 2013
wnt10a physical alteration: anatomical structure, heat shock Fig. 5 with image from Grotek et al., 2013
wt1b heat shock Fig. 11 with image from Kroeger et al., 2017
Reporter gene expression
Expressed Gene Structure Conditions Figures
RFP standard conditions Fig. 7 from Lee et al., 2014
PHENOTYPE
Phenotype in kca3Tg; kca4Tg
Phenotype Conditions Figures
blastema distended, abnormal physical alteration: anatomical structure, heat shock Fig. 6 with image from Münch et al., 2013
blastema increased width, abnormal physical alteration: anatomical structure, heat shock Fig. 4 with image from Münch et al., 2013
blastema swollen, abnormal physical alteration: anatomical structure, heat shock Fig. 4 with image from Münch et al., 2013
blastema cell disorganized, abnormal physical alteration: anatomical structure, heat shock Fig. 4 with image from Münch et al., 2013
blastema cell population proliferation increased process quality, abnormal physical alteration: anatomical structure, heat shock Fig. 5 with image from Münch et al., 2013
blood vessel endothelial cell migration disrupted, abnormal heat shock Fig. 3 with image from Leslie et al., 2007
corpuscles of Stannius stc1 expression decreased distribution, abnormal heat shock Fig. 9 with image from Drummond et al., 2017
corpuscles of Stannius cell decreased amount, abnormal heat shock Fig. 9 with image from Drummond et al., 2017
fin regeneration decreased process quality, abnormal physical alteration: anatomical structure, heat shock Fig. 4 with image from Münch et al., 2013
hematopoietic stem cell differentiation disrupted, abnormal heat shock Fig. 4 from Burns et al., 2009
hematopoietic system runx1 expression increased amount, abnormal heat shock Fig. 6 from Gerri et al., 2018
hematopoietic system myb expression increased amount, abnormal heat shock Fig. 6 from Gerri et al., 2018
intersegmental vessel decreased length, abnormal heat shock Fig. 3 with image from Leslie et al., 2007
Muller cell proliferative, normal heat shock, chemical treatment: purpurogallin Fig. 2 from Conner et al., 2014
Muller cell proliferative, normal heat shock Fig. 2 from Conner et al., 2014
neural plate morphology, abnormal heat shock Fig. 1 from Yeo et al., 2007
neural plate development process quality, abnormal heat shock Fig. 1 from Yeo et al., 2007
neurogenesis decreased rate, abnormal heat shock Fig. 6 from Chapouton et al., 2010
Notch signaling pathway increased process quality, abnormal heat shock Fig. 6 with image from Coolen et al., 2012
pancreas primordium ascl1b expression absent, abnormal heat shock Fig. 5 with image from Ghaye et al., 2015
pancreas primordium nkx6.1 expression increased amount, abnormal heat shock Fig. 5 with image from Ghaye et al., 2015
pancreatic bud ab2-nkx6 labeling increased distribution, abnormal heat shock Fig. 5 with image from Ghaye et al., 2015
pharyngeal arch barx1 expression decreased amount, abnormal heat shock Fig. 3 with image from Barske et al., 2016
pharyngeal arch prrx1b expression increased amount, abnormal heat shock Fig. 8 with image from Barske et al., 2016
pharyngeal arch prrx1a expression increased amount, abnormal heat shock Fig. 8 with image from Barske et al., 2016
pharyngeal arch 1 barx1 expression decreased amount, abnormal heat shock Fig. 3 with image from Barske et al., 2016
pharyngeal arch 2 barx1 expression decreased amount, abnormal heat shock Fig. 3 with image from Barske et al., 2016
pronephros multi-ciliated epithelial cell decreased amount, abnormal heat shock Fig. 7 with image from Li et al., 2014
regenerating fin caudal fin lepidotrichium malformed, abnormal physical alteration: anatomical structure, heat shock Fig. 6 with image from Münch et al., 2013
regenerating fin ossification decreased process quality, abnormal physical alteration: anatomical structure, heat shock Fig. 6 with image from Münch et al., 2013
secondary motor neuron amount, normal standard conditions Fig. 6 with image from Song et al., 2010
secondary motor neuron spatial pattern, normal standard conditions Fig. 6 with image from Song et al., 2010
secondary motor neuron axon morphology, normal standard conditions Fig. 6 with image from Song et al., 2010
ventral wall of dorsal aorta myb expression amount, ameliorated heat shock, chemical treatment by environment: 17beta-estradiol Fig. 4 with image from Carroll et al., 2014
ventral wall of dorsal aorta runx1 expression amount, ameliorated heat shock, chemical treatment by environment: 17beta-estradiol Fig. 4 with image from Carroll et al., 2014
ventral wall of dorsal aorta runx1 expression decreased amount, abnormal chemical treatment by environment: 17beta-estradiol Fig. 4 with image from Carroll et al., 2014
ventral wall of dorsal aorta myb expression decreased amount, abnormal chemical treatment by environment: 17beta-estradiol Fig. 4 with image from Carroll et al., 2014
ventral wall of dorsal aorta myb expression decreased amount, abnormal heat shock Fig. 3 with image from Zhang et al., 2015
ventral wall of dorsal aorta myb expression increased amount, abnormal heat shock Fig. 6 from Gerri et al., 2018
ventral wall of dorsal aorta runx1 expression increased amount, abnormal heat shock Fig. 4 with image from Carroll et al., 2014
ventral wall of dorsal aorta myb expression increased amount, abnormal heat shock Fig. 3 with image from Zhang et al., 2015
ventral wall of dorsal aorta myb expression increased amount, abnormal heat shock Fig. 6 from Lee et al., 2014
ventral wall of dorsal aorta runx1 expression increased amount, abnormal heat shock Fig. 6 from Gerri et al., 2018
ventral wall of dorsal aorta myb expression increased amount, abnormal heat shock Fig. 4 with image from Carroll et al., 2014
ventral wall of dorsal aorta hematopoietic multipotent progenitor cell myb expression amount, ameliorated chemical treatment: wortmannin Fig. 7 from Konantz et al., 2016
ventral wall of dorsal aorta hematopoietic multipotent progenitor cell runx1 expression amount, ameliorated chemical treatment: wortmannin Fig. 7 from Konantz et al., 2016
ventral wall of dorsal aorta hematopoietic multipotent progenitor cell increased amount, abnormal heat shock Fig. 2 with image from Lin et al., 2015
ventral wall of dorsal aorta hematopoietic multipotent progenitor cell myb expression increased distribution, abnormal heat shock Fig. 2 with image from Lin et al., 2015
ventral wall of dorsal aorta hematopoietic stem cell increased amount, abnormal heat shock Fig. 4 from Burns et al., 2009

CITATIONS  (49)