ZFIN ID: ZDB-FISH-150901-2109
Fish name: kca3Tg; kca4Tg
Genotype: kca3Tg; kca4Tg
Targeting Reagent: none

HUMAN DISEASE MODELED by kca3Tg; kca4Tg
No data available
GENE EXPRESSION
Gene expression in kca3Tg; kca4Tg
RNA expression
Expressed Gene Structure Conditions Figures
aldh1a2 heat shock, physical alteration: anatomical structure Fig. 5 with image from Münch et al., 2013
and1 heat shock, physical alteration: anatomical structure Fig. 5 with image from Grotek et al., 2013
ascl1a control Fig. 5 with image from Wan et al., 2012
ascl1b heat shock Fig. 5 with image from Ghaye et al., 2015
barx1 heat shock Fig. 3 with image from Barske et al., 2016
cbfb heat shock Fig. 7 from Bresciani et al., 2014
cga heat shock Fig. 5 with image from Dutta et al., 2008
col1a2 physical alteration: anatomical structure Fig. 6 with image from Grotek et al., 2013
col10a1a physical alteration: anatomical structure Fig. 6 with image from Grotek et al., 2013
dlx2a heat shock Fig. 8 with image from Barske et al., 2016
etv4 heat shock, physical alteration: anatomical structure Fig. 5 with image from Grotek et al., 2013
gh1 heat shock Fig. 5 with image from Dutta et al., 2008
hbegfa control Fig. 5 with image from Wan et al., 2012
her4.1 control Fig. 6 with image from Coolen et al., 2012
heat shock Fig. 6 with image from Coolen et al., 2012
Fig. 1 from Yeo et al., 2007
her6 heat shock, physical alteration: anatomical structure Fig. 4 with image from Münch et al., 2013
her15.2 heat shock, physical alteration: anatomical structure Fig. 4 with image from Münch et al., 2013
ilf2 heat shock, physical alteration: anatomical structure Fig. 5 with image from Grotek et al., 2013
inhbaa heat shock, physical alteration: anatomical structure Fig. 5 with image from Grotek et al., 2013
lef1 heat shock, physical alteration: anatomical structure Fig. 5 with image from Grotek et al., 2013
lhx3 heat shock Fig. 3 with image from Dutta et al., 2008
msx1a heat shock, physical alteration: anatomical structure Fig. 5 with image from Münch et al., 2013
msx1b heat shock, physical alteration: anatomical structure Fig. 5 with image from Münch et al., 2013
msx2b heat shock, physical alteration: anatomical structure Fig. 5 with image from Grotek et al., 2013
myb chemical treatment: wortmannin Fig. 7 from Konantz et al., 2016
heat shock Fig. 3 with image from Zhang et al., 2015
Fig. 7 from Bresciani et al., 2014
Fig. 6 from Lee et al., 2014
Fig. 4 from Burns et al., 2009
mycb heat shock Fig. 2 with image from Lin et al., 2015
neurog1 control Fig. 6 with image from Coolen et al., 2012
heat shock Fig. 6 with image from Coolen et al., 2012
nkx6.1 heat shock Fig. 5 with image from Ghaye et al., 2015
odf3b heat shock Fig. 7 with image from Li et al., 2014
pcna heat shock Fig. 6 from Chapouton et al., 2010
pomca heat shock Fig. 5 with image from Dutta et al., 2008
prl heat shock Fig. 3 with imageFig. 5 with image from Dutta et al., 2008
prrx1a heat shock Fig. 8 with image from Barske et al., 2016
prrx1b heat shock Fig. 8 with image from Barske et al., 2016
runx1 standard conditions Fig. 3 from Kim et al., 2014
chemical treatment: wortmannin Fig. 7 from Konantz et al., 2016
heat shock Fig. 7 from Bresciani et al., 2014
Fig. 3 from Kim et al., 2014
Fig. S7 from Kobayashi et al., 2014
Fig. 4 from Burns et al., 2009
runx2b physical alteration: anatomical structure Fig. 6 with image from Grotek et al., 2013
s100b heat shock Fig. 6 from Chapouton et al., 2010
shha physical alteration: anatomical structure Fig. 6 with image from Grotek et al., 2013
smyhc1 heat shock Fig. 7 with image from Li et al., 2014
stc1 heat shock Fig. 9 with image from Drummond et al., 2017
tcf7 heat shock, physical alteration: anatomical structure Fig. 6 with image from Münch et al., 2013
tshba heat shock Fig. 5 with image from Dutta et al., 2008
ttk heat shock, physical alteration: anatomical structure Fig. 5 with image from Grotek et al., 2013
wnt5b heat shock, physical alteration: anatomical structure Fig. 5 with image from Grotek et al., 2013
wnt10a heat shock, physical alteration: anatomical structure Fig. 5 with image from Grotek et al., 2013
Protein expression
Antibody Antigen Genes Structure Conditions Figures
zrf-1 heat shock Fig. 6 with image from Kim et al., 2008
Ab1-myc heat shock Fig. 6 from Chapouton et al., 2010
zn-5 standard conditions Fig. 6 with image from Song et al., 2010
zrf-1 standard conditions Fig. 6 with image from Kim et al., 2008
Ab2-nkx6 heat shock Fig. 5 with image from Ghaye et al., 2015
Ab1-glul chemical treatment: purpurogallin, heat shock Fig. 2 from Conner et al., 2014
Fig. 6 with image from Del Bene et al., 2008
Ab1-glul standard conditions Fig. 6 with image from Del Bene et al., 2008
zpr-1 standard conditions Fig. 5 with image from Wan et al., 2012
Ab1-s100 s100b heat shock Fig. 6 from Chapouton et al., 2010
Reporter gene expression
Expressed Gene Structure Conditions Figures
RFP control Fig. 7 from Lee et al., 2014
PHENOTYPE
Phenotype in kca3Tg; kca4Tg
Phenotype Conditions Figures
blastema distended, abnormal heat shock, physical alteration: anatomical structure Fig. 6 with image from Münch et al., 2013
blastema increased width, abnormal heat shock, physical alteration: anatomical structure Fig. 4 with image from Münch et al., 2013
blastema swollen, abnormal heat shock, physical alteration: anatomical structure Fig. 4 with image from Münch et al., 2013
blastema cell disorganized, abnormal heat shock, physical alteration: anatomical structure Fig. 4 with image from Münch et al., 2013
blastema cell proliferation increased process quality, abnormal heat shock, physical alteration: anatomical structure Fig. 5 with image from Münch et al., 2013
blood vessel endothelial cell migration disrupted, abnormal heat shock Fig. 3 with image from Leslie et al., 2007
corpuscles of Stannius stc1 expression decreased distribution, abnormal heat shock Fig. 9 with image from Drummond et al., 2017
corpuscles of Stannius cell decreased amount, abnormal heat shock Fig. 9 with image from Drummond et al., 2017
fin regeneration decreased process quality, abnormal heat shock, physical alteration: anatomical structure Fig. 4 with image from Münch et al., 2013
hematopoietic stem cell differentiation disrupted, abnormal heat shock Fig. 4 from Burns et al., 2009
intersegmental vessel decreased length, abnormal heat shock Fig. 3 with image from Leslie et al., 2007
Muller cell proliferative, normal heat shock Fig. 2 from Conner et al., 2014
Muller cell proliferative, normal chemical treatment: purpurogallin, heat shock Fig. 2 from Conner et al., 2014
neural plate morphology, abnormal heat shock Fig. 1 from Yeo et al., 2007
neural plate development process quality, abnormal heat shock Fig. 1 from Yeo et al., 2007
neurogenesis decreased rate, abnormal heat shock Fig. 6 from Chapouton et al., 2010
Notch signaling pathway increased process quality, abnormal heat shock Fig. 6 with image from Coolen et al., 2012
pancreas primordium ascl1b expression absent, abnormal heat shock Fig. 5 with image from Ghaye et al., 2015
pancreas primordium nkx6.1 expression increased amount, abnormal heat shock Fig. 5 with image from Ghaye et al., 2015
pancreatic bud ab2-nkx6 labeling increased distribution, abnormal heat shock Fig. 5 with image from Ghaye et al., 2015
pharyngeal arch barx1 expression decreased amount, abnormal heat shock Fig. 3 with image from Barske et al., 2016
pharyngeal arch prrx1b expression increased amount, abnormal heat shock Fig. 8 with image from Barske et al., 2016
pharyngeal arch prrx1a expression increased amount, abnormal heat shock Fig. 8 with image from Barske et al., 2016
pharyngeal arch 1 barx1 expression decreased amount, abnormal heat shock Fig. 3 with image from Barske et al., 2016
pharyngeal arch 2 barx1 expression decreased amount, abnormal heat shock Fig. 3 with image from Barske et al., 2016
pronephros multi-ciliated epithelial cell decreased amount, abnormal heat shock Fig. 7 with image from Li et al., 2014
regenerating fin caudal fin lepidotrichium malformed, abnormal heat shock, physical alteration: anatomical structure Fig. 6 with image from Münch et al., 2013
regenerating fin ossification decreased process quality, abnormal heat shock, physical alteration: anatomical structure Fig. 6 with image from Münch et al., 2013
secondary motor neuron amount, normal standard conditions Fig. 6 with image from Song et al., 2010
secondary motor neuron spatial pattern, normal standard conditions Fig. 6 with image from Song et al., 2010
secondary motor neuron axon morphology, normal standard conditions Fig. 6 with image from Song et al., 2010
ventral wall of dorsal aorta myb expression decreased amount, abnormal heat shock Fig. 3 with image from Zhang et al., 2015
ventral wall of dorsal aorta myb expression increased amount, abnormal heat shock Fig. 6 from Lee et al., 2014
ventral wall of dorsal aorta myb expression increased amount, abnormal heat shock Fig. 3 with image from Zhang et al., 2015
ventral wall of dorsal aorta hematopoietic multipotent progenitor cell myb expression amount, ameliorated chemical treatment: wortmannin Fig. 7 from Konantz et al., 2016
ventral wall of dorsal aorta hematopoietic multipotent progenitor cell runx1 expression amount, ameliorated chemical treatment: wortmannin Fig. 7 from Konantz et al., 2016
ventral wall of dorsal aorta hematopoietic multipotent progenitor cell increased amount, abnormal heat shock Fig. 2 with image from Lin et al., 2015
ventral wall of dorsal aorta hematopoietic multipotent progenitor cell mycb expression increased distribution, abnormal heat shock Fig. 2 with image from Lin et al., 2015
ventral wall of dorsal aorta hematopoietic stem cell increased amount, abnormal heat shock Fig. 4 from Burns et al., 2009

CITATIONS  (46)