FIGURE SUMMARY
Title

The enteric nervous system promotes intestinal health by constraining microbiota composition

Authors
Rolig, A.S., Mittge, E.K., Ganz, J., Troll, J.V., Melancon, E., Wiles, T.J., Alligood, K., Stephens, W.Z., Eisen, J.S., Guillemin, K.
Source
Full text @ PLoS Biol.

sox10 mutants experience bacterial overgrowth and physiological indications of dysbiosis.

(A) Schematic representation of the location and orientation of images in B and D. (B) Representative images of the panbacterial population by FISH on the esophageal-intestinal junction of WT (left) and sox10- (right) fish. Blue, DNA; red, eubacteria. (C) Quantification of bacterial colonization level in sox10 mutants and WT siblings. (D) Representative images of WT, sox10 mutant, and tumor necrosis factor receptor (tnfr) morpholino (MO) injected larvae of both genotypes. Arrowhead indicates neutrophil. (E) Quantification of intestinal neutrophil number per 140 μm of distal intestine. (F) Total numbers of proliferating cells over 30 serial sections beginning at the esophageal-intestinal junction and proceeding into the bulb in 6-d-post-fertilization (dpf) fish. Box plots represent the median and interquartile range; whiskers represent the 5–95 percentile. n > 15 per group, *p < 0.05, ***p < 0.001, ****p < 0.0001, ANOVA with Tukey’s range test. Also see S1 Fig. Scale bars = 50 μm.

ZFIN is incorporating published figure images and captions as part of an ongoing project. Figures from some publications have not yet been curated, or are not available for display because of copyright restrictions.

PHENOTYPE:
Fish:
Condition:
Observed In:
Stage: Day 6

ZFIN is incorporating published figure images and captions as part of an ongoing project. Figures from some publications have not yet been curated, or are not available for display because of copyright restrictions.

EXPRESSION / LABELING:
Gene:
Fish:
Anatomical Term:
Stage: Day 6
PHENOTYPE:
Fish:
Observed In:
Stage: Day 6

ZFIN is incorporating published figure images and captions as part of an ongoing project. Figures from some publications have not yet been curated, or are not available for display because of copyright restrictions.

(A) Addition of a representative Escherichia isolate, E. coli HS, to CV sox10 mutants reduces intestinal neutrophil accumulation. Monoassociation of sox10 mutants with E. coli HS does not increase neutrophil level over that observed in GF zebrafish. n > 20, from at least three independent experiments. (B) Correlation between absolute abundance of E. coli HS and log10(intestinal neutrophil number + 1) in experiments with added E. coli HS. Linear regression analysis with 95% confidence intervals. For A, B: n > 35, from three to six independent experiments. (C) Representative images of distal intestine from WT, sox10-, and sox10- rescued by WT ENS precursor transplantation. Anti-ElavI1–labeled enteric neurons are white (white arrow); neutrophils are black (black arrow). Scale bar = 100 μm. (D) Quantification of intestinal neutrophil number per 140 μm of distal intestine. n > 6 for all conditions, *p < 0.05, **p < 0.01, ****p < 0.0001, ANOVA with Tukey’s range test. See also S4 Fig.

sox10 mutants experience delayed intestinal transit.

(A) Representative images of wild type (WT, left) and sox10- (middle and right images) distal intestine. Anti-ElavI labeled enteric neurons are green (green arrow). Scale bar 100 mm. There are no enteric neurons in the sox10- fish. (B) Schematic of the fluorescent food feeding schedule. Color indicates administration of fluorescent tracer; arrow indicates time of imaging for 8 dpf fish. (C) Representative images of 8 dpf wild types and sox10 mutants. Scale bar 100 mm. (D) The percent of fish with the indicated fluorescent food color in their intestines at 7 and 8 dpf (i.e. ‘eaters’). Each point represents the percentage of eaters from a separate dish of nine to 30 fish. In total, n > 200 fish per genotype per day. Bars represent mean ± SD. **** p < 0.0001, Student’s T-test.

PHENOTYPE:
Fish:
Observed In:
Stage Range: Day 5 to Days 7-13
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ PLoS Biol.