PUBLICATION

A dataset of transcriptomic effects of camptothecin treatment on early zebrafish embryos

Authors
Prykhozhij, S.V., Ban, K., Brown, Z.L., Kobar, K., Wajnberg, G., Fuller, C., Chacko, S., Lacroix, J., Crapoulet, N., Midgen, C., Shlien, A., Malkin, D., Berman, J.N.
ID
ZDB-PUB-241119-2
Date
2024
Source
Data in brief   57: 111041111041 (Journal)
Registered Authors
Ban, Kevin, Berman, Jason, Kobar, Kim, Prykhozhij, Sergey
Keywords
Camptothecin, Chemotherapy, Interferon-stimulated gene, Topoisomerase I inhibitor, Zebrafish (Danio rerio), p53
MeSH Terms
none
PubMed
39554546 Full text @ Data Brief
Abstract
Zebrafish (Danio rerio) are a good model for cancer research including studies on chemotherapy treatments. We treated wild-type and miR-34a deletion mutant zebrafish embryos at 24 h post-fertilization with 1 µM of the topoisomerase I inhibitor, camptothecin (CPT), for 4 h to catalogue gene expression changes induced by this DNA damage treatment and to understand if these changes are influenced by loss of miR-34a. The 4 sample groups of 3 independent biological samples consisting of 30 embryos each were analyzed by RNA-sequencing using the recently updated zebrafish transcriptome annotation based on GRCz11, which enabled a more complete and sensitive read mapping and gene assignment than standard annotations. Using this gene expression estimates dataset as the primary resource, we performed a differentially expressed gene (DEG) analysis based on treatment as loss of miR-34a had minimal effects on CPT-induced expression changes. The DEGs were analyzed for Gene Ontology and KEGG pathway terms. Enriched terms and pathways among up-regulated genes were mostly related to stress, cell death, cell cycle regulation, transcriptional regulation, cell signalling, developmental processes and synthesis of retinol and steroid hormones. By contrast, down-regulated genes were most strongly associated with genes involved in key developmental processes, adhesion molecules, as well as some transport and metabolic pathways, together suggesting a "developmental shutdown". We also identified interferon-regulated genes and p53 target genes activated or inhibited by DNA damage due to topoisomerase I inhibition, suggesting that they are important components of the response to this type of DNA damage in zebrafish embryos.
Genes / Markers
Figures
Figure Gallery (4 images)
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping