PUBLICATION

Real time large scale in vivo observations reveal intrinsic synchrony, plasticity and growth cone dynamics of midline crossing axons at the ventral floor plate of the zebrafish spinal cord

Authors
Andersen, S.S.L.
ID
ZDB-PUB-200109-5
Date
2019
Source
Journal of Integrative Neuroscience   18: 351-368 (Journal)
Registered Authors
Andersen, Søren S. L.
Keywords
Light sheet, commissural, dynamics, extracellular matrix, filopodia, guidance, live, midline, model axon, network, real time
MeSH Terms
  • Animals
  • Animals, Genetically Modified
  • Axon Guidance/physiology*
  • Axons/physiology*
  • Embryonic Development/physiology*
  • Growth Cones/physiology*
  • Nerve Net/embryology*
  • Neuronal Plasticity/physiology*
  • Pseudopodia/physiology*
  • Spinal Cord/cytology
  • Spinal Cord/embryology
  • Spinal Cord/physiology*
  • Zebrafish*/embryology
PubMed
31912693 Full text @ J. Integr. Neurosci.
Abstract
How axons are wiring the vertebrate spinal cord has in particular been studied at the ventral floor plate using fixed samples or looking at single growing axons with various microscopy techniques. Thereby may remain hidden important live organismal scale information concerning dynamics and concurrent timing of the many axons simultaneously crossing the floor plate. Here then, applying light-sheet microscopy, axonal growth and guidance at the floor plate are followed in vivo in real time at high resolution along several hundred micrometers of the zebrafish spinal cord by using an interneuron expressing GFP as a model axon. The commissural axons are observed crossing the ventral floor plate midline perpendicularly at about 20 microns/h and in a manner dependent on the Robo3 receptor. Commissural growth rate reaches a minimum at the midline, confirming previous observations. Ipsilateral axons extend concurrently, at three to six times higher growth rates. At guidance points, commissural axons are seen to decrease their growth rate and growth cones increase in size. Commissural filopodia appear to interact with the nascent neural network, and thereby trigger immediate plastic and reversible sinusoidal-shaped bending movements of neighboring commissural shafts. A simple protocol isolating single neuronal cells from the spinal cord is developed to facilitate further molecular characterization. The recordings show the strikingly stereotyped spatio-temporal control that governs midline crossing. The live observations give renewed perspective on the mechanisms of axonal guidance in the spinal cord that provide for a discussion of the current distinction between diffusible long-range versus substrate-bound short-range guidance cues.
Errata / Notes
The above-mentioned article (Andersen,2019), published online on December 30, 2019 has been withdrawn by Dr. Andersen. The retraction has been issued following additional information received by IMR Press and reviewed by the Chief Editor. Retraction published on 30 December 2019, see Journal of Integrative Neuroscience 2019, 20(4), 351-368 https://jin.imrpress.com/EN/10.31083/j.jin.2019.04.1191
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping