PUBLICATION

Modeling neurodegenerative Spinocerebellar Ataxia type 13 in zebrafish using a Purkinje neuron specific tunable co-expression system

Authors
Namikawa, K., Dorigo, A., Zagrebelsky, M., Russo, G., Kirmann, T., Fahr, W., Dübel, S., Korte, M., Köster, R.W.
ID
ZDB-PUB-190314-4
Date
2019
Source
The Journal of neuroscience : the official journal of the Society for Neuroscience   39(20): 3948-3969 (Journal)
Registered Authors
Köster, Reinhard W., Namikawa, Kazuhiko, Russo, Giulio
Keywords
none
MeSH Terms
  • Animals
  • Animals, Genetically Modified
  • Cerebellum/growth & development
  • Cerebellum/metabolism*
  • Cerebellum/physiopathology
  • Disease Models, Animal*
  • Female
  • Gene Expression Regulation
  • Male
  • Purkinje Cells/metabolism*
  • RNA, Messenger/metabolism
  • Regulatory Elements, Transcriptional
  • Shaw Potassium Channels/genetics
  • Spinocerebellar Ataxias/congenital*
  • Spinocerebellar Ataxias/genetics
  • Spinocerebellar Ataxias/metabolism
  • Zebrafish
  • Zebrafish Proteins/genetics
PubMed
30862666 Full text @ J. Neurosci.
Abstract
Purkinje cells (PCs) are primarily affected in neurodegenerative Spinocerebellar Ataxias (SCAs). For generating animal models for SCAs, genetic regulatory elements specifically targeting PCs are required, thereby linking pathological molecular effects with impaired function and organismic behavior. Because cerebellar anatomy and function are evolutionary conserved, zebrafish represent an excellent model to study SCAs in vivoWe have isolated a 258bp cross-species PC-specific enhancer element that can be used in a bidirectional manner for bioimaging of transgene-expressing PCs in zebrafish (both sexes) with variable copy numbers for tuning expression strength. Emerging ectopic expression at high copy numbers can be further eliminated by repurposing microRNA-mediated posttranslational mRNA regulation.Subsequently, we generated a transgenic SCA type 13 (SCA13) model, using a zebrafish-variant mimicking a human pathological SCA13R420H mutation, resulting in cell-autonomous progressive PC degeneration linked to cerebellum-driven eye-movement deficits as observed in SCA-patients. This underscores that investigating PC-specific cerebellar neuropathologies in zebrafish allows for interconnecting bioimaging of disease mechanisms with behavioral analysis suitable for therapeutic compound testing.SIGNIFICANCE STATEMENTSCA13 patients carrying a KCNC3R420H allele have been shown to display mid- onset progressive cerebellar atrophy, but genetic modeling of SCA13 by expressing this pathogenic mutant in different animal models has not resulted in neuronal degeneration so far - likely because the transgene was expressed in heterologous cell types. We developed a genetic system for tunable PC specific coexpression of several transgenes to manipulate and simultaneously monitor cerebellar PCs. We modeled a SCA13 zebrafish accessible for bio-imaging to investigate disease progression, revealing robust PC degeneration, resulting in impaired eye movement. Our transgenic zebrafish mimicking both neuropathological and behavioral changes manifested in SCA-affected patients will be suitable for investigating causes of cerebellar diseases in vivo from the molecular to the behavioral level.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping