PUBLICATION

Preclinical Animal Models for Dravet Syndrome: Seizure Phenotypes, Comorbidities and Drug Screening

Authors
Griffin, A., Hamling, K.R., Hong, S., Anvar, M., Lee, L.P., Baraban, S.C.
ID
ZDB-PUB-180622-21
Date
2018
Source
Frontiers in pharmacology   9: 573 (Review)
Registered Authors
Baraban, Scott, Griffin, Aliesha
Keywords
animal models, antiepileptic drugs, dravet syndrome, drug discovery, epilepsy, in vivo, precision medicine
MeSH Terms
none
PubMed
29915537 Full text @ Front Pharmacol
Abstract
Epilepsy is a common chronic neurological disease affecting almost 3 million people in the United States and 50 million people worldwide. Despite availability of more than two dozen FDA-approved anti-epileptic drugs (AEDs), one-third of patients fail to receive adequate seizure control. Specifically, pediatric genetic epilepsies are often the most severe, debilitating and pharmaco-resistant forms of epilepsy. Epileptic syndromes share a common symptom of unprovoked seizures. While some epilepsies/forms of epilepsy are the result of acquired insults such as head trauma, febrile seizure, or viral infection, others have a genetic basis. The discovery of epilepsy associated genes suggests varied underlying pathologies and opens the door for development of new "personalized" treatment options for each genetic epilepsy. Among these, Dravet syndrome (DS) has received substantial attention for both the pre-clinical and early clinical development of novel therapeutics. Despite these advances, there is no FDA-approved treatment for DS. Over 80% of patients diagnosed with DS carry a de novo mutation within the voltage-gated sodium channel gene SCN1A and these patients suffer with drug resistant and life-threatening seizures. Here we will review the preclinical animal models for DS featuring inactivation of SCN1A (including zebrafish and mice) with an emphasis on seizure phenotypes and behavioral comorbidities. Because many drugs fail somewhere between initial preclinical discovery and clinical trials, it is equally important that we understand how these models respond to known AEDs. As such, we will also review the available literature and recent drug screening efforts using these models with a focus on assay protocols and predictive pharmacological profiles. Validation of these preclinical models is a critical step in our efforts to efficiently discover new therapies for these patients. The behavioral and electrophysiological drug screening assays in zebrafish will be discussed in detail including specific examples from our laboratory using a zebrafish scn1 mutant and a summary of the nearly 3000 drugs screened to date. As the discovery and development phase rapidly moves from the lab-to-the-clinic for DS, it is hoped that this preclinical strategy offers a platform for how to approach any genetic epilepsy.
Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping