PUBLICATION
Real-Time Monitoring and Analysis of Zebrafish Electrocardiogram with Anomaly Detection
- Authors
- Lenning, M., Fortunato, J., Le, T., Clark, I., Sherpa, A., Yi, S., Hofsteen, P., Thamilarasu, G., Yang, J., Xu, X., Han, H.D., Hsiai, T.K., Cao, H.
- ID
- ZDB-PUB-171229-5
- Date
- 2017
- Source
- Sensors (Basel, Switzerland) 18(1): (Journal)
- Registered Authors
- Xu, Xiaolei, Yang, Jingchun
- Keywords
- ECG pattern recognition, electrocardiogram (ECG), heart diseases, machine learning, phenotype screening, real-time monitoring, zebrafish
- MeSH Terms
-
- Electrocardiography*
- Zebrafish
- Signal-To-Noise Ratio
- Animals
- Microelectrodes
- Heart
- PubMed
- 29283402 Full text @ Sensors (Basel)
Citation
Lenning, M., Fortunato, J., Le, T., Clark, I., Sherpa, A., Yi, S., Hofsteen, P., Thamilarasu, G., Yang, J., Xu, X., Han, H.D., Hsiai, T.K., Cao, H. (2017) Real-Time Monitoring and Analysis of Zebrafish Electrocardiogram with Anomaly Detection. Sensors (Basel, Switzerland). 18(1).
Abstract
Heart disease is the leading cause of mortality in the U.S. with approximately 610,000 people dying every year. Effective therapies for many cardiac diseases are lacking, largely due to an incomplete understanding of their genetic basis and underlying molecular mechanisms. Zebrafish (Danio rerio) are an excellent model system for studying heart disease as they enable a forward genetic approach to tackle this unmet medical need. In recent years, our team has been employing electrocardiogram (ECG) as an efficient tool to study the zebrafish heart along with conventional approaches, such as immunohistochemistry, DNA and protein analyses. We have overcome various challenges in the small size and aquatic environment of zebrafish in order to obtain ECG signals with favorable signal-to-noise ratio (SNR), and high spatial and temporal resolution. In this paper, we highlight our recent efforts in zebrafish ECG acquisition with a cost-effective simplified microelectrode array (MEA) membrane providing multi-channel recording, a novel multi-chamber apparatus for simultaneous screening, and a LabVIEW program to facilitate recording and processing. We also demonstrate the use of machine learning-based programs to recognize specific ECG patterns, yielding promising results with our current limited amount of zebrafish data. Our solutions hold promise to carry out numerous studies of heart diseases, drug screening, stem cell-based therapy validation, and regenerative medicine.
Genes / Markers
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Orthology
Engineered Foreign Genes
Mapping