ZFIN ID: ZDB-PUB-170921-8
Vegetally localised Vrtn functions as a novel repressor to modulate bmp2b transcription during dorsoventral patterning in zebrafish.
Shao, M., Wang, M., Liu, Y.Y., Ge, Y.W., Zhang, Y.J., Shi, D.L.
Date: 2017
Source: Development (Cambridge, England)   144: 3361-3374 (Journal)
Registered Authors: Shao, Ming, Shi, De-Li
Keywords: BMP signalling, Bmp2b, Dorsoventral patterning, Vegetal maternal determinants, Vrtn, Zebrafish
Microarrays: GEO:GSE103090
MeSH Terms:
  • Animals
  • Base Sequence
  • Body Patterning*/genetics
  • Bone Morphogenetic Protein 2/genetics*
  • Bone Morphogenetic Protein 2/metabolism
  • COS Cells
  • Chlorocebus aethiops
  • Egg Yolk/metabolism*
  • Embryo, Nonmammalian/cytology
  • Embryo, Nonmammalian/metabolism
  • Gene Expression Regulation, Developmental
  • Models, Biological
  • Mutation/genetics
  • Protein Binding/genetics
  • RNA, Messenger/genetics
  • RNA, Messenger/metabolism
  • Repressor Proteins/genetics
  • Repressor Proteins/metabolism*
  • Transcription, Genetic
  • Wnt Signaling Pathway/genetics
  • Zebrafish/embryology*
  • Zebrafish/genetics
  • Zebrafish Proteins/genetics
  • Zebrafish Proteins/metabolism*
  • Zygote/metabolism
PubMed: 28928283 Full text @ Development
The vegetal pole cytoplasm represents a crucial source of maternal dorsal determinants for patterning the dorsoventral axis of the early embryo. Removal of the vegetal yolk in the zebrafish fertilised egg before the completion of the first cleavage results in embryonic ventralisation, but removal of this part at the two-cell stage leads to embryonic dorsalisation. How this is achieved remains unknown. Here, we report a novel mode of maternal regulation of BMP signalling during dorsoventral patterning in zebrafish. We identify Vrtn as a novel vegetally localised maternal factor with dorsalising activity and rapid transport towards the animal pole region after fertilisation. Co-injection of vrtn mRNA with vegetal RNAs from different cleavage stages suggests the presence of putative vegetally localised Vrtn antagonists with slower animal pole transport. Thus, vegetal ablation at the two-cell stage could remove most of the Vrtn antagonists, and allows Vrtn to produce the dorsalising effect. Mechanistically, Vrtn binds a bmp2b regulatory sequence and acts as a repressor to inhibit its zygotic transcription. Analysis of maternal-zygotic vrtn mutants further shows that Vrtn is required to constrain excessive bmp2b expression in the margin. Our work unveils a novel maternal mechanism regulating zygotic BMP gradient in dorsoventral patterning.