PUBLICATION
            FAM222B Is Not a Likely Novel Candidate Gene for Cerebral Cavernous Malformations
- Authors
- Spiegler, S., Kirchmaier, B., Rath, M., Korenke, G.C., Tetzlaff, F., van de Vorst, M., Neveling, K., Acker-Palmer, A., Kuss, A.W., Gilissen, C., Fischer, A., Schulte-Merker, S., Felbor, U.
- ID
- ZDB-PUB-160903-6
- Date
- 2016
- Source
- Molecular Syndromology 7: 144-52 (Journal)
- Registered Authors
- Acker-Palmer, Amparo, Kirchmaier, Bettina, Schulte-Merker, Stefan
- Keywords
- Angiogenesis, Animal models, Cerebral cavernous malformations, Cerebrovascular disease, Intracerebral haemorrhage
- MeSH Terms
- none
- PubMed
- 27587990 Full text @ Mol. Syndromol.
            Citation
        
        
            Spiegler, S., Kirchmaier, B., Rath, M., Korenke, G.C., Tetzlaff, F., van de Vorst, M., Neveling, K., Acker-Palmer, A., Kuss, A.W., Gilissen, C., Fischer, A., Schulte-Merker, S., Felbor, U. (2016) FAM222B Is Not a Likely Novel Candidate Gene for Cerebral Cavernous Malformations. Molecular Syndromology. 7:144-52.
        
    
                
                    
                        Abstract
                    
                    
                
                
            
        
        
    
        
            
            
 
    
    
        
    
    
    
        
                Cerebral cavernous malformations (CCMs) are prevalent slow-flow vascular lesions which harbour the risk to develop intracranial haemorrhages, focal neurological deficits, and epileptic seizures. Autosomal dominantly inherited CCMs were found to be associated with heterozygous inactivating mutations in 3 genes, CCM1 (KRIT1), CCM2 (MGC4607), and CCM3 (PDCD10) in 1999, 2003 and 2005, respectively. Despite the availability of high-throughput sequencing techniques, no further CCM gene has been published since. Here, we report on the identification of an autosomal dominantly inherited frameshift mutation in a gene of thus far unknown function, FAM222B (C17orf63), through exome sequencing of CCM patients mutation-negative for CCM1-3. A yeast 2-hybrid screen revealed interactions of FAM222B with the tubulin cytoskeleton and STAMBP which is known to be associated with microcephaly-capillary malformation syndrome. However, a phenotype similar to existing models was not found, neither in fam222bb/fam222ba double mutant zebrafish generated by transcription activator-like effector nucleases nor in an in vitro sprouting assay using human umbilical vein endothelial cells transfected with siRNA against FAM222B. These observations led to the assumption that aberrant FAM222B is not involved in the formation of CCMs.
            
    
        
        
    
    
    
                
                    
                        Genes / Markers
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Expression
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Phenotype
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mutations / Transgenics
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Human Disease / Model
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Sequence Targeting Reagents
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Fish
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Orthology
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Engineered Foreign Genes
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    
                
                    
                        Mapping
                    
                    
                
                
            
        
        
    
        
            
            
        
        
    
    
    