PUBLICATION

Towards comprehensive cell lineage reconstructions in complex organisms using light-sheet microscopy

Authors
Amat, F., and Keller, P.J.
ID
ZDB-PUB-130603-2
Date
2013
Source
Development, growth & differentiation   55(4): 563-578 (Review)
Registered Authors
Amat, Fernando, Keller, Philipp
Keywords
cell lineage reconstruction, cell tracking, data visualization, embryonic development, light-sheet microscopy, quantitative developmental biology
MeSH Terms
  • Animals
  • Cell Lineage
  • Computational Biology/methods
  • Developmental Biology/methods*
  • Drosophila
  • Image Processing, Computer-Assisted
  • Mice
  • Microscopy, Fluorescence/methods*
  • Signal-To-Noise Ratio
  • Software
  • Time Factors
  • Zebrafish
PubMed
23621671 Full text @ Dev. Growth Diff.
Abstract

Understanding the development of complex multicellular organisms as a function of the underlying cell behavior is one of the most fundamental goals of developmental biology. The ability to quantitatively follow cell dynamics in entire developing embryos is an indispensable step towards such a system-level understanding. In recent years, light-sheet fluorescence microscopy has emerged as a particularly promising strategy for recording the in vivo data required to realize this goal. Using light-sheet fluorescence microscopy, entire complex organisms can be rapidly imaged in three dimensions at sub-cellular resolution, achieving high temporal sampling and excellent signal-to-noise ratio without damaging the living specimen or bleaching fluorescent markers. The resulting datasets allow following individual cells in vertebrate and higher invertebrate embryos over up to several days of development. However, the complexity and size of these multi-terabyte recordings typically preclude comprehensive manual analyses. Thus, new computational approaches are required to automatically segment cell morphologies, accurately track cell identities and systematically analyze cell behavior throughout embryonic development. We review current efforts in light-sheet microscopy and bioimage informatics towards this goal, and argue that comprehensive cell lineage reconstructions are finally within reach for many key model organisms, including fruit fly, zebrafish and mouse.

Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping