PUBLICATION

Changes in zebrafish (Danio rerio) lens crystallin content during development

Authors
Wages, P., Horwitz, J., Ding, L., Corbin, R.W., and Posner, M.
ID
ZDB-PUB-130312-16
Date
2013
Source
Molecular Vision   19: 408-417 (Journal)
Registered Authors
Posner, Mason
Keywords
none
MeSH Terms
  • Animals
  • Crystallins/genetics
  • Crystallins/metabolism*
  • Electrophoresis, Gel, Two-Dimensional
  • Lens, Crystalline/growth & development*
  • Lens, Crystalline/metabolism*
  • Proteome/genetics
  • Proteome/metabolism
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
  • Zebrafish/growth & development*
  • Zebrafish/metabolism*
  • Zebrafish Proteins/genetics
  • Zebrafish Proteins/metabolism*
  • alpha-Crystallins/genetics
  • alpha-Crystallins/metabolism
  • beta-Crystallins/genetics
  • beta-Crystallins/metabolism
  • gamma-Crystallins/genetics
  • gamma-Crystallins/metabolism
PubMed
23441112
Abstract

Purpose

The roles that crystallin proteins play during lens development are not well understood. Similarities in the adult crystallin composition of mammalian and zebrafish lenses have made the latter a valuable model for examining lens function. In this study, we describe the changing zebrafish lens proteome during development to identify ontogenetic shifts in crystallin expression that may provide insights into age-specific functions.

Methods

Two-dimensional gel electrophoresis and size exclusion chromatography were used to characterize the lens crystallin content of 4.5-day to 27-month-old zebrafish. Protein spots were identified with mass spectrometry and comparisons with previously published proteomic maps, and quantified with densitometry. Constituents of size exclusion chromatography elution peaks were identified with sodium dodecyl sulfate–polyacrylamide gel electrophoresis.

Results

Zebrafish lens crystallins were expressed in three ontogenetic patterns, with some crystallins produced at relatively constant levels throughout development, others expressed primarily before 10 weeks of age (βB1-, βA1-, and γN2-crystallins), and a third group primarily after 10 weeks (α-, βB3-, and γS-crystallins). Alpha-crystallins comprised less than 1% of total lens protein in 4.5-day lenses and increased to less than 7% in adult lenses. The developmental period between 6 weeks and 4 months contained the most dramatic shifts in lens crystallin expression.

Conclusions

These data provide the first two-dimensional gel electrophoresis maps of the developing zebrafish lens, with quantification of changing crystallin abundance and visualization of post-translational modification. Results suggest that some crystallins may play stage specific roles during lens development. The low levels of zebrafish lens α-crystallin relative to mammals may be due to the high concentrations of γ-crystallins in this aquatic lens. Similarities with mammalian crystallin expression continue to support the use of the zebrafish as a model for lens crystallin function.

Genes / Markers
Figures
Show all Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping