PUBLICATION

Diverse Chemical Scaffolds Support Direct Inhibition of the Membrane-bound O-Acyltransferase Porcupine

Authors
Dodge, M.E., Moon, J., Tuladhar, R., Lu, J., Jacob, L.S., Zhang, L.S., Shi, H., Wang, X., Moro, E., Mongera, A., Argenton, F., Karner, C.M., Carroll, T.J., Chen, C., Amatruda, J.F., and Lum, L.
ID
ZDB-PUB-120727-37
Date
2012
Source
The Journal of biological chemistry   287(27): 23246-23254 (Journal)
Registered Authors
Amatruda, James F., Argenton, Francesco, Mongera, Alessandro, Moon, Jesung, Moro, Enrico
Keywords
chemical biology, development, protein palmitoylation, signal transduction, Wnt signaling
MeSH Terms
  • Animals
  • Animals, Genetically Modified
  • Antineoplastic Agents/pharmacology
  • COS Cells
  • Cell Membrane/enzymology
  • Chlorocebus aethiops
  • Drug Design
  • Enzyme Inhibitors/pharmacology*
  • Guided Tissue Regeneration/methods*
  • HEK293 Cells
  • HeLa Cells
  • Humans
  • Kidney/cytology
  • Kidney/embryology
  • Kidney/enzymology
  • Membrane Proteins/antagonists & inhibitors*
  • Membrane Proteins/metabolism
  • Organ Culture Techniques
  • Tissue Scaffolds*
  • Wnt Signaling Pathway/drug effects
  • Wnt Signaling Pathway/physiology*
  • Zebrafish
  • beta Catenin/metabolism
PubMed
22593577 Full text @ J. Biol. Chem.
Abstract

Secreted Wnt proteins constitute one of the largest families of intercellular signaling molecules in vertebrates with essential roles in embryonic development and adult tissue homeostasis. The functional redundancy of Wnt genes and the many forms of cellular responses they elicit, including some utilizing the transcriptional co-activator β-catenin, has limited the ability of classical genetic strategies to uncover their roles in vivo. We had previously identified a chemical compound class termed Inhibitor of Wnt Production (or IWP) that targets Porcupine (Porcn), an acyltransferase catalyzing the addition of fatty acid adducts onto Wnt proteins. Here we demonstrate that diverse chemical structures are able to inhibit Porcn by targeting its putative active site. When deployed in concert with small molecules that modulate the activity of Tankyrase enzymes and glycogen synthase kinase 3 β (GSK3β), additional transducers of Wnt/β-catenin signaling, the IWP compounds reveal an essential role for Wnt protein fatty acylation in eliciting β-catenin-dependent and -independent forms of Wnt signaling during zebrafish development. This collection of small molecules facilitates rapid dissection of Wnt gene function in vivo by limiting the influence of redundant Wnt gene functions on phenotypic outcomes and enables temporal manipulation of Wnt-mediated signaling in vertebrates.

Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping