PUBLICATION

Whole-animal imaging, gene function, and the Zebrafish Phenome Project

Authors
Cheng, K.C., Xin, X., Clark, D.P., and La Riviere, P.
ID
ZDB-PUB-111019-2
Date
2011
Source
Current opinion in genetics & development   21(5): 620-9 (Journal)
Registered Authors
Cheng, Keith C.
Keywords
none
MeSH Terms
  • Animals
  • Gene Expression Regulation, Developmental*
  • Genome*
  • Humans
  • Models, Animal
  • Phenotype
  • Zebrafish/genetics*
PubMed
21963132 Full text @ Curr. Opin. Genet. Dev.
Abstract
Imaging can potentially make a major contribution to the Zebrafish Phenome Project, which will probe the functions of vertebrate genes through the generation and phenotyping of mutants. Imaging of whole animals at different developmental stages through adulthood will be used to infer biological function. Cell resolutions will be required to identify cellular mechanism and to detect a full range of organ effects. Light-based imaging of live zebrafish embryos is practical only up to <2 days of development, owing to increasing pigmentation and diminishing tissue lucency with age. The small size of the zebrafish makes possible whole-animal imaging at cell resolutions by histology and micron-scale tomography (microCT). The histological study of larvae is facilitated by the use of arrays, and histology's standard use in the study of human disease enhances its translational value. Synchrotron microCT with X-rays of moderate energy (10–25 keV) is unimpeded by pigmentation or the tissue thicknesses encountered in zebrafish of larval stages and beyond, and is well-suited to detecting phenotypes that may require 3D modeling. The throughput required for this project will require robotic sample preparation and loading, increases in the dimensions and sensitivity of scintillator and CCD chips, increases in computer power, and the development of new approaches to image processing, segmentation, and quantification.
Genes / Markers
Figures
Expression
Phenotype
Mutations / Transgenics
Human Disease / Model
Sequence Targeting Reagents
Fish
Antibodies
Orthology
Engineered Foreign Genes
Mapping