header logo image header logo text
Downloads Login
Research
General Information
ZIRC
ZFIN ID: ZDB-PUB-090616-43
High resolution fate map of the zebrafish diencephalon
Russek-Blum, N., Nabel-Rosen, H., and Levkowitz, G.
Date: 2009
Source: Developmental dynamics : an official publication of the American Association of Anatomists 238(7): 1827-1835 (Journal)
Registered Authors: Levkowitz, Gil, Nabel-Rosen, Helit, Russek-Blum, Niva
Keywords: neural progenitors, forebrain development, hypothalamus, dopaminergic neurons, two photon microscopy, neural patterning
MeSH Terms:
  • Animals
  • Animals, Genetically Modified
  • Brain Mapping/methods
  • Diencephalon/anatomy & histology*
  • Diencephalon/cytology
  • Diencephalon/embryology*
  • Diencephalon/metabolism
  • Embryo, Nonmammalian
  • Fluorescein/pharmacokinetics
  • Models, Biological
  • Morphogenesis/physiology*
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Stem Cells/physiology
  • Tyrosine 3-Monooxygenase/metabolism
  • Zebrafish/anatomy & histology
  • Zebrafish/embryology*
PubMed: 19504459 Full text @ Dev. Dyn.
FIGURES
ABSTRACT
The diencephalon acts as an interactive site between the sensory, central, and endocrine systems and is one of the most elaborate structures in the vertebrate brain. To better understand the embryonic development and morphogenesis of the diencephalon, we developed an improved photoactivation (uncaging)-based lineage tracing strategy. To determine the exact position of a given diencephalic progenitor domain, we used a transgenic line driving green fluorescent protein (GFP) in cells expressing the proneural protein, Neurogenin1 (Neurog1), which was used as a visible neural plate landmark. This approach facilitated precise labeling of defined groups of cells in the prospective diencephalon of the zebrafish neural plate. In this manner, we labeled multiple overlapping areas of the diencephalon, thereby ensuring both accuracy and reproducibility of our lineage tracing regardless of the dynamic changes of the developing neural plate. We present a fate map of the zebrafish diencephalon at a higher spatial resolution than previously described.
ADDITIONAL INFORMATION