ZFIN ID: ZDB-LAB-001121-1
A. Kawakami Lab
Co-PI / Senior
Kawakami, Atsushi
Contact Person: Kawakami, Atsushi
Email: atkawaka@bio.titech.ac.jp
URL: http://www.kawakami.bio.titech.ac.jp/index.html
Address: Department of Biological Information Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama, 226-8501, Japan
Country: Japan
Phone: +81-45-924-5717
Fax: +81-45-924-5718
Line Designation: tyt

Show all 14 genomic features

All genome sequence data have been determined in many organisms including human being. However, we still don't know how these genes act to make up our body, morphology, organs and even our behaviors and individual differences.

During development, any kind of biological phenomenon, for example the organizer in early development, midline signaling from notochord/floor plate and somite segmentation, includes the transmission of information between cells through signaling molecules. In addition, many other molecules also play important roles inside and outside of the cells to relay the information to the gene regulation. To understand "the black box" between genes and phenomena, we think it is important to know the signaling cascade and regulation.

We aim to explore the pathway between "signal" and "phenomena" through the developmental genetic approach using zebrafish.


Hamada, H., Uemoto, T., Tanaka, Y., Honda, Y., Kitajima, K., Umeda, T., Kawakami, A., Shinya, M., Kawakami, K., Tamura, K., Abe, G. (2019) Pattern of fin rays along the antero-posterior axis based on their connection to distal radials. Zoological letters. 5:30
Shibata, E., Liu, Z., Kawasaki, T., Sakai, N., Kawakami, A. (2018) Robust and local positional information within a fin ray directs fin length during zebrafish regeneration. Development, growth & differentiation. 60(6):354-364
Shibata, E., Ando, K., Murase, E., Kawakami, A. (2018) Heterogeneous fates and dynamic rearrangement of regenerative epidermis-derived cells during zebrafish fin regeneration. Development (Cambridge, England). 145(8)
Ando, K., Shibata, E., Hans, S., Brand, M., Kawakami, A. (2017) Osteoblast Production by Reserved Progenitor Cells in Zebrafish Bone Regeneration and Maintenance. Developmental Cell. 43(5):643-650.e3
Hasegawa, T., Hall, C.J., Crosier, P.S., Abe, G., Kawakami, K., Kudo, A., Kawakami, A. (2017) Transient inflammatory response mediated by interleukin-1β is required for proper regeneration in zebrafish fin fold. eLIFE. 6
Shibata, E., Yokota, Y., Horita, N., Kudo, A., Abe, G., Kawakami, K., Kawakami, A. (2016) Fgf signalling controls diverse aspects of fin regeneration. Development (Cambridge, England). 143:2920-9
Hasegawa, T., Nakajima, T., Ishida, T., Kudo, A., Kawakami, A. (2015) A diffusible signal derived from hematopoietic cells supports the survival and proliferation of regenerative cells during zebrafish fin fold regeneration. Developmental Biology. 399(1):80-90
Yoshinari, N., Ando, K., Kudo, A., Kinoshita, M., and Kawakami, A. (2012) Colored medaka and zebrafish: Transgenics with ubiquitous and strong transgene expression driven by the medaka beta-actin promoter. Development, growth & differentiation. 54(9):818-828
Yoshinari, N., and Kawakami, A. (2011) Mature and juvenile tissue models of regeneration in small fish species. The Biological bulletin. 221(1):62-78
Ishida, T., Nakajima, T., Kudo, A., and Kawakami, A. (2010) Phosphorylation of Junb family proteins by the Jun N-terminal kinase supports tissue regeneration in zebrafish. Developmental Biology. 340(2):468-479
Yoshinari, N., Ishida, T., Kudo, A., and Kawakami, A. (2009) Gene expression and functional analysis of zebrafish larval fin fold regeneration. Developmental Biology. 325(1):71-81
Parvin, M.S., Okuyama, N., Inoue, F., Islam, M.E., Kawakami, A., Takeda, H., and Yamasu, K. (2008) Autoregulatory loop and retinoic acid repression regulate pou2/pou5f1 gene expression in the zebrafish embryonic brain. Developmental dynamics : an official publication of the American Association of Anatomists. 237(5):1373-1388
Sultana, N., Nag, K., Hoshijima, K., Laird, D.W., Kawakami, A., and Hirose, S. (2008) Zebrafish early cardiac connexin, Cx36.7/Ecx, regulates myofibril orientation and heart morphogenesis by establishing Nkx2.5 expression. Proceedings of the National Academy of Sciences of the United States of America. 105(12):4763-4768
Mathew, L.K., Sengupta, S., Kawakami, A., Andreasen, E.A., Löhr, C.V., Loynes, C.A., Renshaw, S.A., Peterson, R.T., and Tanguay, R.L. (2007) Unraveling tissue regeneration pathways using chemical genetics. The Journal of biological chemistry. 282(48):35202-35210
Nishidate, M., Nakatani, Y., Kudo, A., and Kawakami, A. (2007) Identification of novel markers expressed during fin regeneration by microarray analysis in medaka fish. Developmental dynamics : an official publication of the American Association of Anatomists. 236(9):2685-2693
Nakatani, Y., Kawakami, A., and Kudo, A. (2007) Cellular and molecular processes of regeneration, with special emphasis on fish fins. Development, growth & differentiation. 49(2):145-154
Islam, M.E., Kikuta, H., Inoue, F., Kanai, M., Kawakami, A., Parvin, M.S., Takeda, H., and Yamasu, K. (2006) Three enhancer regions regulate gbx2 gene expression in the isthmic region during zebrafish development. Mechanisms of Development. 123(12):907-924
Watanabe, M., Iwashita, M., Ishii, M., Kurachi, Y., Kawakami, A., Kondo, S., and Okada, N. (2006) Spot pattern of leopard Danio is caused by mutation in the zebrafish connexin41.8 gene. EMBO reports. 7(9):893-897
Teraoka, H., Dong, W., Okuhara, Y., Iwasa, H., Shindo, A., Hill, A.J., Kawakami, A., and Hiraga, T. (2006) Impairment of lower jaw growth in developing zebrafish exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin and reduced hedgehog expression. Aquatic toxicology (Amsterdam, Netherlands). 78(2):103-113
Murayama, E., Herbomel, P., Kawakami, A., Takeda, H., and Nagasawa H. (2005) Otolith matrix proteins OMP-1 and Otolin-1 are necessary for normal otolith growth and their correct anchoring onto the sensory maculae. Mechanisms of Development. 122(6):791-803
Kawakami, A., Nojima, Y., Toyoda, A., Takahoko, M., Satoh, M., Tanaka, H., Wada, H., Masai, I., Terasaki, H., Sakaki, Y., Takeda, H., and Okamoto, H. (2005) The zebrafish-secreted matrix protein you/scube2 is implicated in long-range regulation of hedgehog signaling. Current biology : CB. 15(5):480-488
Kawakami, A., Fukazawa, T., and Takeda, H. (2004) Early fin primordia of zebrafish larvae regenerate by a similar growth control mechanism with adult regeneration. Developmental dynamics : an official publication of the American Association of Anatomists. 231(4):693-699
Sekimizu, K., Nishioka, N., Sasaki, H., Takeda, H., Karlstrom, R.O., and Kawakami, A. (2004) The zebrafish iguana locus encodes Dzip1, a novel zinc-finger protein required for proper regulation of Hedgehog signaling. Development (Cambridge, England). 131(11):2521-2532
Nakano, Y., Kim, H.R., Kawakami, A., Roy, S., Schier, A.F., and Ingham, P.W. (2004) Inactivation of dispatched 1 by the chameleon mutation disrupts Hedgehog signalling in the zebrafish embryo. Developmental Biology. 269(2):381-392
Yabe, T., Shimizu, T., Muraoka, O., Bae, Y.-K., Hirata, T., Nojima, H., Kawakami, A., Hirano, T., and Hibi, M. (2003) Ogon/Secreted Frizzled functions as a negative feedback regulator of Bmp signaling. Development (Cambridge, England). 130(12):2705-2716
Karlstrom, R.O., Tyurina, O.V., Kawakami, A., Nishioka, N., Talbot, W.S., Sasaki, H., and Schier, A.F. (2003) Genetic analysis of zebrafish gli1 and gli2 reveals divergent requirements for gli genes in vertebrate development. Development (Cambridge, England). 130(8):1549-1564
Nikaido, M., Kawakami, A., Sawada, A., Furutani-Seiki, M., Takeda, H., and Araki, K. (2002) Tbx24, encoding a T-box protein, is mutated in the zebrafish somite-segmentation mutant fused somites. Nature Genetics. 31(2):195-199
Kawakami, A. (2000) [Zebrafish genetics and genomics].. Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme. 45(Suppl. 17):2853-2863