Gene
tcf7l1b
- ID
- ZDB-GENE-991110-10
- Name
- transcription factor 7 like 1b
- Symbol
- tcf7l1b Nomenclature History
- Previous Names
-
- tcf3b (1)
- Type
- protein_coding_gene
- Location
- Chr: 8 Mapping Details/Browsers
- Description
- Predicted to enable DNA-binding transcription factor activity, RNA polymerase II-specific and RNA polymerase II cis-regulatory region sequence-specific DNA binding activity. Involved in regulation of transcription by RNA polymerase II. Acts upstream of or within several processes, including cell proliferation in dorsal spinal cord; endothelial cell fate specification; and nervous system development. Predicted to be located in nucleus. Predicted to be part of beta-catenin-TCF complex. Predicted to be active in chromatin. Is expressed in nervous system; optic vesicle; and posterior neural tube. Orthologous to human TCF7L1 (transcription factor 7 like 1).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 8 figures from 7 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
ihb315 | Allele with one deletion | Exon 1 | Unknown | CRISPR | |
la026648Tg | Transgenic insertion | Unknown | Unknown | DNA | |
zf157Tg | Transgenic insertion | Unknown | Unknown | DNA |
1 - 3 of 3
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-tcf7l1b | (2) | |
MO1-tcf7l1b | N/A | (12) |
MO3-tcf7l1b | N/A | (2) |
MO4-tcf7l1b | N/A | Hübner et al., 2017 |
MO5-tcf7l1b | N/A | (3) |
1 - 5 of 5
Show
Human Disease
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Domain | IPR009071 | High mobility group box domain |
Domain | IPR013558 | CTNNB1 binding, N-teminal |
Family | IPR024940 | Transcription factor TCF/LEF |
Homologous_superfamily | IPR027397 | Catenin binding domain superfamily |
Homologous_superfamily | IPR036910 | High mobility group box domain superfamily |
Domain Details Per Protein
Protein | Additional Resources | Length | Catenin binding domain superfamily | CTNNB1 binding, N-teminal | High mobility group box domain | High mobility group box domain superfamily | Transcription factor TCF/LEF |
---|---|---|---|---|---|---|---|
UniProtKB:Q800Q5 | InterPro | 551 | |||||
UniProtKB:F1R336 | InterPro | 550 |
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
tcf7l1b-201
(1)
|
Ensembl | 4,356 nt | ||
mRNA |
tcf7l1b-202
(1)
|
Ensembl | 3,042 nt | ||
mRNA |
tcf7l1b-203
(1)
|
Ensembl | 1,040 nt | ||
mRNA |
tcf7l1b-204
(1)
|
Ensembl | 3,711 nt | ||
mRNA |
tcf7l1b-205
(1)
|
Ensembl | 4,461 nt |
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH73-233G2 | ZFIN Curated Data | |
Contained in | BAC | CH211-155H12 | ZFIN Curated Data | |
Contained in | Fosmid | CH1073-354H10 | ZFIN Curated Data | |
Contained in | Fosmid | CH1073-360A7 | ZFIN Curated Data | |
Contained in | Fosmid | CH1073-459D16 | ZFIN Curated Data | |
Contained in | Fosmid | CH1073-467B24 | ZFIN Curated Data |
1 - 6 of 6
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_131296 (1) | 4080 nt | ||
Genomic | GenBank:BX005248 (2) | 185135 nt | ||
Polypeptide | UniProtKB:Q800Q5 (1) | 551 aa |
- Owen, N., Toms, M., Young, R.M., Eintracht, J., Sarkar, H., Brooks, B.P., Moosajee, M., Genomics England Research Consortium (2022) Identification of 4 novel human ocular coloboma genes ANK3, BMPR1B, PDGFRA, and CDH4 through evolutionary conserved vertebrate gene analysis. Genetics in medicine : official journal of the American College of Medical Genetics. 24(5):1073-1084
- Young, R.M., Ewan, K.B., Ferrer, V.P., Allende, M.L., Godovac-Zimmermann, J., Dale, T.C., Wilson, S.W. (2019) Developmentally regulated Tcf7l2 splice variants mediate transcriptional repressor functions during eye formation. eLIFE. 8:
- Young, R.M., Hawkins, T.A., Cavodeassi, F., Stickney, H.L., Schwarz, Q., Lawrence, L.M., Wierzbicki, C., Cheng, B.Y., Luo, J., Ambrosio, E.M., Klosner, A., Sealy, I.M., Rowell, J., Trivedi, C.A., Bianco, I.H., Allende, M.L., Busch-Nentwich, E.M., Gestri, G., Wilson, S.W. (2019) Compensatory growth renders Tcf7l1a dispensable for eye formation despite its requirement in eye field specification. eLIFE. 8:
- Facchinello, N., Tarifeño-Saldivia, E., Grisan, E., Schiavone, M., Peron, M., Mongera, A., Ek, O., Schmitner, N., Meyer, D., Peers, B., Tiso, N., Argenton, F. (2017) Tcf7l2 plays pleiotropic roles in the control of glucose homeostasis, pancreas morphology, vascularization and regeneration. Scientific Reports. 7:9605
- Hübner, K., Grassme, K.S., Rao, J., Wenke, N.K., Zimmer, C.L., Korte, L., Mu Ller, K., Sumanas, S., Greber, B., Herzog, W. (2017) Wnt Signaling Positively Regulates Endothelial Cell Fate Specification in the Fli1a-Positive Progenitor Population via Lef1. Developmental Biology. 430(1):142-155
- Mandal, A., Holowiecki, A., Song, Y.C., Waxman, J.S. (2017) Wnt signaling balances specification of the cardiac and pharyngeal muscle fields. Mechanisms of Development. 143:32-41
- So, J., Khaliq, M., Evason, K., Ninov, N., Martin, B.L., Stainier, D.Y.R., Shin, D. (2017) Wnt/β-catenin signaling controls intrahepatic biliary network formation in zebrafish by regulating Notch activity. Hepatology (Baltimore, Md.). 67(6):2352-2366
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Gaston-Massuet, C., McCabe, M.J., Scagliotti, V., Young, R.M., Carreno, G., Gregory, L.C., Jayakody, S.A., Pozzi, S., Gualtieri, A., Basu, B., Koniordou, M., Wu, C.I., Bancalari, R.E., Rahikkala, E., Veijola, R., Lopponen, T., Graziola, F., Turton, J., Signore, M., Mousavy Gharavy, S.N., Charolidi, N., Sokol, S.Y., Andoniadou, C.L., Wilson, S.W., Merrill, B.J., Dattani, M.T., Martinez-Barbera, J.P. (2016) Transcription factor 7-like 1 is involved in hypothalamo-pituitary axis development in mice and humans. Proceedings of the National Academy of Sciences of the United States of America. 113:E548-57
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
1 - 10 of 33
Show