Gene
ldha
- ID
- ZDB-GENE-991026-5
- Name
- lactate dehydrogenase A4
- Symbol
- ldha Nomenclature History
- Previous Names
-
- ldha1 (1)
- Type
- protein_coding_gene
- Location
- Chr: 25 Mapping Details/Browsers
- Description
- Predicted to enable L-lactate dehydrogenase activity. Acts upstream of or within response to hypoxia. Predicted to be located in cytoplasm. Predicted to be active in mitochondrion. Is expressed in several structures, including cardiovascular system; gill; liver; muscle; and nervous system. Orthologous to human LDHA (lactate dehydrogenase A).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 28 figures from 16 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- MGC:55215 (6 images)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa16917 | Allele with one point mutation | Unknown | Splice Site | ENU |
1 - 1 of 1
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
Glycogen storage disease XI | 612933 |
1 - 1 of 1
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Active_site | IPR018177 | L-lactate dehydrogenase, active site |
Domain | IPR001236 | Lactate/malate dehydrogenase, N-terminal |
Domain | IPR022383 | Lactate/malate dehydrogenase, C-terminal |
Family | IPR001557 | L-lactate/malate dehydrogenase |
Family | IPR011304 | L-lactate dehydrogenase |
1 - 5 of 7 Show all
Domain Details Per Protein
Protein | Length | Lactate dehydrogenase/glycoside hydrolase, family 4, C-terminal | Lactate/malate dehydrogenase, C-terminal | Lactate/malate dehydrogenase, N-terminal | L-lactate dehydrogenase | L-lactate dehydrogenase, active site | L-lactate/malate dehydrogenase | NAD(P)-binding domain superfamily |
---|---|---|---|---|---|---|---|---|
UniProtKB:Q9PVK5
|
333 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH73-182E20 | ZFIN Curated Data | |
Contains | SNP | rs3729373 | Stickney et al., 2002 | |
Contains | SNP | rs3729374 | Stickney et al., 2002 | |
Contains | SNP | rs3729375 | Stickney et al., 2002 | |
Contains | STS | chunp30590 | ||
Encodes | cDNA | MGC:55215 | ZFIN Curated Data | |
Encodes | cDNA | MGC:76821 | ZFIN Curated Data | |
Encodes | cDNA | MGC:192397 | ZFIN Curated Data |
1 - 8 of 8
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_131246 (1) | 2157 nt | ||
Genomic | GenBank:FP236788 (2) | 101072 nt | ||
Polypeptide | UniProtKB:Q9PVK5 (1) | 333 aa |
- Wang, J.X., Zhang, Y.Y., Qian, Y.C., Qian, Y.F., Jin, A.H., Wang, M., Luo, Y., Qiao, F., Zhang, M.L., Chen, L.Q., Du, Z.Y. (2024) Inhibition of mitochondrial citrate shuttle alleviates metabolic syndromes induced by high-fat diet. American journal of physiology. Cell physiology. 327(3):C737-C749
- Liao, Q., Zhu, C., Sun, X., Wang, Z., Chen, X., Deng, H., Tang, J., Jia, S., Liu, W., Xiao, W., Liu, X. (2023) Disruption of sirtuin 7 in zebrafish facilitates hypoxia tolerance. The Journal of biological chemistry. 299(8):105074
- Liu, W., Lin, S., Li, L., Tai, Z., Liu, J.X. (2023) Zebrafish ELL-associated factors Eaf1/2 modulate erythropoiesis via regulating gata1a expression and WNT signaling to facilitate hypoxia tolerance. Cell regeneration (London, England). 12:1010
- Shanaka, K.A.S.N., Jung, S., Madushani, K.P., Kim, M.J., Lee, J. (2023) Viperin mutation is linked to immunity, immune cell dynamics, and metabolic alteration during VHSV infection in zebrafish. Frontiers in immunology. 14:13277491327749
- Bohaud, C., Cruz, J., Terraza, C., Barthelaix, A., Laplace-Builhé, B., Jorgensen, C., Arribat, Y., Djouad, F. (2022) Lactate metabolism coordinates macrophage response and regeneration in zebrafish. Theranostics. 12:3995-4009
- Brandão, A.S., Borbinha, J., Pereira, T., Brito, P.H., Lourenço, R., Bensimon-Brito, A., Jacinto, A. (2022) A regeneration-triggered metabolic adaptation is necessary for cell identity transitions and cell cycle re-entry to support blastema formation and bone regeneration. eLIFE. 11
- Gao, Y., Jin, Q., Gao, C., Chen, Y., Sun, Z., Guo, G., Peng, J. (2022) Unraveling Differential Transcriptomes and Cell Types in Zebrafish Larvae Intestine and Liver. Cells. 11(20):
- Jin, Q., Gao, Y., Shuai, S., Chen, Y., Wang, K., Chen, J., Peng, J., Gao, C. (2022) Cdx1b protects intestinal cell fate by repressing signaling networks for liver specification. Journal of genetics and genomics = Yi chuan xue bao. 49(12):1101-1113
- Kulkarni, A., Ibrahim, S., Haider, I., Basha, A., Montgomery, E., Ermis, E., Mirmira, R.G., Anderson, R.M. (2022) A Novel 2-Hit Zebrafish Model to Study Early Pathogenesis of Non-Alcoholic Fatty Liver Disease. Biomedicines. 10(2):
- Morgan, R., Andreassen, A.H., Åsheim, E.R., Finnøen, M.H., Dresler, G., Brembu, T., Loh, A., Miest, J.J., Jutfelt, F. (2022) Reduced physiological plasticity in a fish adapted to stable temperatures. Proceedings of the National Academy of Sciences of the United States of America. 119:e2201919119
1 - 10 of 68
Show