Gene
slc7a8a
- ID
- ZDB-GENE-121120-2
- Name
- solute carrier family 7 member 8a
- Symbol
- slc7a8a Nomenclature History
- Previous Names
- None
- Type
- protein_coding_gene
- Location
- Chr: 7 Mapping Details/Browsers
- Description
- Predicted to enable L-amino acid transmembrane transporter activity and neutral L-amino acid transmembrane transporter activity. Predicted to be involved in amino acid transmembrane transport and neutral amino acid transport. Predicted to act upstream of or within amino acid transport and transmembrane transport. Predicted to be located in basolateral plasma membrane. Orthologous to human SLC7A8 (solute carrier family 7 member 8).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 3 figures from 3 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa1219 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa10767 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa14212 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa20924 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa20925 | Allele with one point mutation | Unknown | Splice Site | ENU |
1 - 5 of 5
Show
No data available
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Amino acid/polyamine transporter I | Cellular Amino Acid Transporter | L-type amino acid transporter |
---|---|---|---|---|---|
UniProtKB:E7EXU6 | InterPro | 531 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
slc7a8a-201
(1)
|
Ensembl | 6,116 nt |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-216P19 |
1 - 1 of 1
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001271897 (1) | 4559 nt | ||
Genomic | GenBank:CR318603 (1) | 188703 nt | ||
Polypeptide | UniProtKB:E7EXU6 (2) | 531 aa |
- Vöcking, O., Famulski, J.K. (2023) A temporal single cell transcriptome atlas of zebrafish anterior segment development. Scientific Reports. 13:56565656
- Szenker-Ravi, E., Ott, T., Khatoo, M., de Bellaing, A.M., Goh, W.X., Chong, Y.L., Beckers, A., Kannesan, D., Louvel, G., Anujan, P., Ravi, V., Bonnard, C., Moutton, S., Schoen, P., Fradin, M., Colin, E., Megarbane, A., Daou, L., Chehab, G., Di Filippo, S., Rooryck, C., Deleuze, J.F., Boland, A., Arribard, N., Eker, R., Tohari, S., Ng, A.Y., Rio, M., Lim, C.T., Eisenhaber, B., Eisenhaber, F., Venkatesh, B., Amiel, J., Crollius, H.R., Gordon, C.T., Gossler, A., Roy, S., Attie-Bitach, T., Blum, M., Bouvagnet, P., Reversade, B. (2021) Discovery of a genetic module essential for assigning left-right asymmetry in humans and ancestral vertebrates. Nature Genetics. 54(1):62-72
- Walter, K.M., Dach, K., Hayakawa, K., Giersiefer, S., Heuer, H., Lein, P.J., Fritsche, E. (2019) Ontogenetic expression of thyroid hormone signaling genes: An in vitro and in vivo species comparison. PLoS One. 14:e0221230
- Takayama, K., Muto, A., Kikuchi, Y. (2018) Leucine/glutamine and v-ATPase/lysosomal acidification via mTORC1 activation are required for position-dependent regeneration. Scientific Reports. 8:8278
- Walter, K.M., Miller, G.W., Chen, X., Yaghoobi, B., Puschner, B., Lein, P.J. (2018) Effects of Thyroid Hormone Disruption on the Ontogenetic Expression of Thyroid Hormone Signaling Genes in Developing Zebrafish (Danio rerio). General and comparative endocrinology. 272:20-32
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Stapel, L.C., Lombardot, B., Broaddus, C., Kainmueller, D., Jug, F., Myers, E.W., Vastenhouw, N.L. (2016) Automated detection and quantification of single RNAs at cellular resolution in zebrafish embryos. Development (Cambridge, England). 143(3):540-6
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Lo, J., Lee, S., Xu, M., Liu, F., Ruan, H., Eun, A., He, Y., Ma, W., Wang, W., Wen, Z., and Peng, J. (2003) 15,000 unique zebrafish EST clusters and their future use in microarray for profiling gene expression patterns during embryogenesis. Genome research. 13(3):455-466
1 - 10 of 10
Show