Gene
qdpra
- ID
- ZDB-GENE-070705-197
- Name
- quinoid dihydropteridine reductase a
- Symbol
- qdpra Nomenclature History
- Previous Names
-
- dhpra (1)
- si:ch211-89f22.2
- Type
- protein_coding_gene
- Location
- Chr: 14 Mapping Details/Browsers
- Description
- Predicted to enable 6,7-dihydropteridine reductase activity; NADH binding activity; and NADPH binding activity. Acts upstream of or within L-phenylalanine metabolic process and melanin biosynthetic process. Predicted to be active in cytoplasm. Is expressed in eye; liver; melanoblast; and presumptive retinal pigmented epithelium. Human ortholog(s) of this gene implicated in BH4-deficient hyperphenylalaninemia C and phenylketonuria. Orthologous to human QDPR (quinoid dihydropteridine reductase).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 2 figures from Breuer et al., 2019
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- 2 figures from Breuer et al., 2019
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
No data available
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
BH4-deficient hyperphenylalaninemia C | Alliance | Hyperphenylalaninemia, BH4-deficient, C | 261630 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | NAD(P)-binding domain superfamily | Short-chain dehydrogenase/reductase, conserved site | Short-chain dehydrogenase/reductase SDR |
---|---|---|---|---|---|
UniProtKB:A7YT77 | InterPro | 237 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-89F22 | ||
Encodes | cDNA | MGC:136893 | ZFIN Curated Data |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001110469 (1) | 1528 nt | ||
Genomic | GenBank:CT956065 (2) | 169875 nt | ||
Polypeptide | UniProtKB:A7YT77 (1) | 237 aa |
- Breuer, M., Guglielmi, L., Zielonka, M., Hemberger, V., Kölker, S., Okun, J.G., Hoffmann, G.F., Carl, M., Sauer, S.W., Opladen, T. (2019) QDPR homologues in Danio rerio regulate melanin synthesis, early gliogenesis, and glutamine homeostasis. PLoS One. 14:e0215162
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Huang, L., Zuo, Z., Zhang, Y., Wang, C. (2015) Toxicogenomic analysis in the combined effect of tributyltin and benzo[a]pyrene on the development of zebrafish embryos. Aquatic toxicology (Amsterdam, Netherlands). 158C:157-164
- Braasch, I., Brunet, F., Volff, J.N., and Schartl, M. (2009) Pigmentation pathway evolution after whole-genome duplication in fish. Genome biology and evolution. 1:479-493
- Braasch, I., Schartl, M., and Volff, J.N. (2007) Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evolutionary Biology. 7(1):74
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 7 of 7
Show