Gene
wasla
- ID
- ZDB-GENE-070209-220
- Name
- WASP like actin nucleation promoting factor a
- Symbol
- wasla Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 25 Mapping Details/Browsers
- Description
- Predicted to enable actin binding activity. Acts upstream of or within macrophage differentiation; myoblast fusion; and thrombocyte differentiation. Predicted to be located in cytoplasm and cytoskeleton. Predicted to be active in endoplasmic reticulum membrane and nucleus. Is expressed in caudal fin. Orthologous to human WASL (WASP like actin nucleation promoting factor).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 2 figures from 2 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- 2 figures from Bielczyk-Maczy?ska et al., 2014
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
1 - 6 of 6
Show
Human Disease
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Domain | IPR000095 | CRIB domain |
Domain | IPR000697 | WH1/EVH1 domain |
Domain | IPR003124 | WH2 domain |
Domain | IPR033927 | WASP family, EVH1 domain |
Family | IPR051412 | Formin Homology Diaphanous subfamily |
Homologous_superfamily | IPR011026 | Actin nucleation-promoting factor WAS, C-terminal |
Homologous_superfamily | IPR011993 | PH-like domain superfamily |
Homologous_superfamily | IPR036936 | CRIB domain superfamily |
Domain Details Per Protein
Protein | Additional Resources | Length | Actin nucleation-promoting factor WAS, C-terminal | CRIB domain | CRIB domain superfamily | Formin Homology Diaphanous subfamily | PH-like domain superfamily | WASP family, EVH1 domain | WH1/EVH1 domain | WH2 domain |
---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:A0A8M9PGN8 | InterPro | 494 | ||||||||
UniProtKB:A0A8M9PMJ9 | InterPro | 439 | ||||||||
UniProtKB:A2RUY4 | InterPro | 502 |
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-12K12 | ZFIN Curated Data | |
Contained in | BAC | CH211-194B17 | ZFIN Curated Data | |
Encodes | cDNA | MGC:158395 | ZFIN Curated Data |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001083006 (1) | 2951 nt | ||
Genomic | GenBank:BX248137 (1) | 209896 nt | ||
Polypeptide | UniProtKB:A2RUY4 (1) | 502 aa |
- Luo, Z., Shi, J., Pandey, P., Ruan, Z.R., Sevdali, M., Bu, Y., Lu, Y., Du, S., Chen, E.H. (2022) The cellular architecture and molecular determinants of the zebrafish fusogenic synapse. Developmental Cell. 57(13):1582-1597.e6
- Mazzolini, J., Le Clerc, S., Morisse, G., Coulonges, C., Zagury, J.F., Sieger, D. (2022) Wasl is crucial to maintain microglial core activities during glioblastoma initiation stages. Glia. 70(6):1027-1051
- Hawkins, M.B., Henke, K., Harris, M.P. (2021) Latent developmental potential to form limb-like skeletal structures in zebrafish. Cell. 184(4):899-911.e13
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Nolte, H., Hölper, S., Housley, M.P., Islam, S., Piller, T., Konzer, A., Stainier, D.Y., Braun, T., Krüger, M. (2015) Dynamics of zebrafish fin regeneration using a pulsed SILAC approach. Proteomics. 15(4):739-51
- Bielczyk-Maczyńska, E., Serbanovic-Canic, J., Ferreira, L., Soranzo, N., Stemple, D.L., Ouwehand, W.H., Cvejic, A. (2014) A loss of function screen of identified genome-wide association study Loci reveals new genes controlling hematopoiesis. PLoS Genetics. 10:e1004450
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 8 of 8
Show