Gene
top1a
- ID
- ZDB-GENE-060616-217
- Name
- DNA topoisomerase Ia
- Symbol
- top1a Nomenclature History
- Previous Names
-
- top1l
- wu:fc66a02
- zgc:136349
- Type
- protein_coding_gene
- Location
- Chr: 11 Mapping Details/Browsers
- Description
- Predicted to enable DNA topoisomerase type I (single strand cut, ATP-independent) activity. Predicted to be involved in DNA replication; DNA topological change; and chromosome segregation. Predicted to act upstream of or within rhythmic process. Predicted to be located in chromosome and nucleus. Predicted to be active in nucleolus. Orthologous to human TOP1 (DNA topoisomerase I).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 1 figure from Thisse et al., 2004
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:6898978 (1 image)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la017797Tg | Transgenic insertion | Unknown | Unknown | DNA | |
la017798Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa2597 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa5843 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa21911 | Allele with one point mutation | Unknown | Splice Site | ENU |
1 - 5 of 5
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-top1a | Thomas et al., 2024 | |
CRISPR2-top1a | Thomas et al., 2024 |
1 - 2 of 2
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
DNA topoisomerase I, camptothecin-resistant |
1 - 1 of 1
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Domain | IPR008336 | DNA topoisomerase I, DNA binding, eukaryotic-type |
Domain | IPR013499 | DNA topoisomerase I, eukaryotic-type |
Domain | IPR013500 | DNA topoisomerase I, catalytic core, eukaryotic-type |
Domain | IPR025834 | Topoisomerase I C-terminal domain |
Domain | IPR048045 | DNA topoisomerase I, DNA-binding domain |
1 - 5 of 13 Show all
Domain Details Per Protein
Protein | Additional Resources | Length | DNA breaking-rejoining enzyme, catalytic core | DNA topoisomerase I | DNA topoisomerase IB | DNA topoisomerase I, catalytic core, alpha/beta subdomain | DNA topoisomerase I, catalytic core, alpha-helical subdomain, eukaryotic-type | DNA topoisomerase I, catalytic core, eukaryotic-type | DNA topoisomerase I, DNA-binding domain | DNA topoisomerase I, DNA binding, eukaryotic-type | DNA topoisomerase I, DNA binding, eukaryotic-type, N-terminal domain superfamily | DNA topoisomerase I, DNA binding, N-terminal domain 1 | DNA topoisomerase I, DNA binding, N-terminal domain 2 | DNA topoisomerase I, eukaryotic-type | Topoisomerase I C-terminal domain |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:Q1ED17 | InterPro | 758 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-232B12 | ZFIN Curated Data | |
Encodes | EST | fc66a02 | ||
Encodes | EST | IMAGE:6898978 | Thisse et al., 2004 | |
Encodes | cDNA | MGC:136349 | ZFIN Curated Data |
1 - 4 of 4
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001044324 (1) | 3798 nt | ||
Genomic | GenBank:CR548630 (1) | 117408 nt | ||
Polypeptide | UniProtKB:Q1ED17 (1) | 758 aa |
- Thomas, R.C., Zaksauskaite, R., Al-Kandari, N.Y., Hyde, A.C., Abugable, A.A., El-Khamisy, S.F., van Eeden, F.J. (2024) Second generation lethality in RNAseH2a knockout zebrafish. Nucleic acids research. 52(18):11014-11028
- White, R.J., Mackay, E., Wilson, S.W., Busch-Nentwich, E.M. (2022) Allele-specific gene expression can underlie altered transcript abundance in zebrafish mutants. eLIFE. 11:
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Leontovich, A.A., Intine, R.V., Sarras, M.P. (2016) Epigenetic Studies Point to DNA Replication/Repair Genes as a Basis for the Heritable Nature of Long Term Complications in Diabetes. Journal of Diabetes Research. 2016:2860780
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Tiedke, J., Cubuk, C., and Burmester, T. (2013) Environmental acidification triggers oxidative stress and enhances globin expression in zebrafish gills. Biochemical and Biophysical Research Communications. 441(3):624-9
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Kopp, R., Schwerte, T., Egg, M., Sandbichler, A.M., Egger, B., and Pelster, B. (2010) Chronic reduction in cardiac output induces hypoxic signaling in larval zebrafish even at a time when convective oxygen transport is not required. Physiological Genomics. 42(1):8-23
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 10 of 10
Show