Gene
lrrc4.1
- ID
- ZDB-GENE-041210-129
- Name
- leucine rich repeat containing 4.1
- Symbol
- lrrc4.1 Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 4 Mapping Details/Browsers
- Description
- Predicted to be involved in modulation of chemical synaptic transmission and synapse organization. Predicted to be located in membrane. Predicted to be active in glutamatergic synapse and postsynaptic density membrane. Is expressed in basal plate midbrain region; nervous system; and neural plate. Orthologous to human LRRC4 (leucine rich repeat containing 4).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 8 figures from 2 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- cssl:d0365 (17 images)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
hu3286 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa17055 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa17086 | Allele with one point mutation | Unknown | Premature Stop | ENU | |
sa40278 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 4 of 4
Show
No data available
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Cysteine-rich flanking region, C-terminal | Immunoglobulin domain subtype | Immunoglobulin I-set | Immunoglobulin-like domain | Immunoglobulin-like domain superfamily | Immunoglobulin-like fold | Immunoglobulin subtype 2 | Leucine-rich repeat | Leucine-rich repeat and transmembrane domain-containing protein | Leucine-rich repeat domain superfamily | Leucine-rich repeat N-terminal domain | Leucine-rich repeat, typical subtype |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:E9QDQ3 | InterPro | 858 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
lrrc4.1-201
(1)
|
Ensembl | 4,108 nt | ||
mRNA |
lrrc4.1-202
(1)
|
Ensembl | 1,800 nt | ||
mRNA |
lrrc4.1-203
(1)
|
Ensembl | 1,908 nt | ||
mRNA |
lrrc4.1-204
(1)
|
Ensembl | 1,896 nt | ||
mRNA |
lrrc4.1-205
(1)
|
Ensembl | 1,845 nt |
1 - 5 of 5
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-235L7 | ZFIN Curated Data | |
Encodes | EST | cssl:d0365 | Thisse et al., 2008 |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001030194 (1) | 4108 nt | ||
Genomic | GenBank:BX855622 (1) | 128116 nt | ||
Polypeptide | UniProtKB:E9QDQ3 (1) | 858 aa |
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Panza, P., Sitko, A.A., Maischein, H.M., Koch, I., Flötenmeyer, M., Wright, G.J., Mandai, K., Mason, C.A., Söllner, C. (2015) The LRR receptor Islr2 is required for retinal axon routing at the vertebrate optic chiasm. Neural Development. 10:23
- Charoensawan, V., Adryan, B., Martin, S., Söllner, C., Thisse, B., Thisse, C., Wright, G.J., and Teichmann, S.A. (2010) The Impact of Gene Expression Regulation on Evolution of Extracellular Signaling Pathways. Molecular & cellular proteomics : MCP. 9(12):2666-2677
- Martin, S., Söllner, C., Charoensawan, V., Adryan, B., Thisse, B., Thisse, C., Teichmann, S.A., and Wright, G.J. (2010) Construction of a large extracellular protein interaction network and its resolution by spatiotemporal expression profiling. Molecular & cellular proteomics : MCP. 9(12):2654-2665
- Kassahn, K.S., Dang, V.T., Wilkins, S.J., Perkins, A.C., and Ragan, M.A. (2009) Evolution of gene function and regulatory control after whole-genome duplication: Comparative analyses in vertebrates. Genome research. 19(8):1404-1418
- Söllner, C., and Wright, G.J. (2009) A cell surface interaction network of neural leucine-rich repeat receptors. Genome biology. 10(9):R99
1 - 8 of 8
Show