Gene
efna1b
- ID
- ZDB-GENE-041007-5
- Name
- ephrin-A1b
- Symbol
- efna1b Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 16 Mapping Details/Browsers
- Description
- Predicted to enable ephrin receptor binding activity. Acts upstream of or within hematopoietic stem cell differentiation. Predicted to be located in side of membrane. Predicted to be active in plasma membrane. Is expressed in several structures, including cardiovascular system; nervous system; optic vesicle; periderm; and segmental plate. Orthologous to human EFNA1 (ephrin A1).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 11 figures from 5 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- MGC:73307 (22 images)
Wild Type Expression Summary
- All Phenotype Data
- 1 Figure from Wada et al., 2022
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
kz5 | Allele with one delins | Unknown | Unknown | CRISPR | |
la010493Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa42713 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 3 of 3
Show
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-efna1b | (2) | |
CRISPR2-efna1b | Wada et al., 2022 | |
CRISPR3-efna1b | Wada et al., 2022 | |
CRISPR4-efna1b | Wada et al., 2022 | |
MO1-efna1b | N/A | Liu et al., 2013 |
MO2-efna1b | N/A | Liu et al., 2013 |
1 - 6 of 6
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Cupredoxin | Ephrin | Ephrin-A ectodomain | Ephrin, conserved site | Ephrin receptor-binding domain |
---|---|---|---|---|---|---|---|
UniProtKB:O93431 | InterPro | 229 |
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
efna1b-201
(1)
|
Ensembl | 1,809 nt | ||
ncRNA |
efna1b-002
(1)
|
Ensembl | 687 nt |
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-186G6 | ZFIN Curated Data | |
Encodes | cDNA | MGC:73307 |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_200783 (1) | 1804 nt | ||
Genomic | GenBank:AL935167 (2) | 137333 nt | ||
Polypeptide | UniProtKB:O93431 (1) | 229 aa |
- Wada, Y., Tsukatani, H., Kuroda, C., Miyazaki, Y., Otoshi, M., Kobayashi, I. (2022) Jagged 2b induces intercellular signaling within somites to establish hematopoietic stem cell fate in zebrafish. Development (Cambridge, England). 149(7)
- Knickmeyer, M.D., Mateo, J.L., Heermann, S. (2021) BMP Signaling Interferes with Optic Chiasm Formation and Retinal Ganglion Cell Pathfinding in Zebrafish. International Journal of Molecular Sciences. 22(9):
- Harboe, M., Torvund-Jensen, J., Kjaer-Sorensen, K., Laursen, L.S. (2018) Ephrin-A1-EphA4 signaling negatively regulates myelination in the central nervous system. Glia. 66(5):934-950
- Klangnurak, W., Tokumoto, T. (2017) Fine selection of up-regulated genes during ovulation by in vivo induction of oocyte maturation and ovulation in zebrafish.. Zoological letters. 3:2
- Zhang, J.F., Jiang, Z., Liu, X., Meng, A. (2016) Eph-ephrin signaling maintains the boundary of dorsal forerunner cell cluster during morphogenesis of the zebrafish embryonic left-right organizer. Development (Cambridge, England). 143(14):2603-15
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Liu, L.Y., Fox, C.S., North, T.E., and Goessling, W. (2013) Functional validation of GWAS gene candidates for abnormal liver function during zebrafish liver development. Disease models & mechanisms. 6(5):1271-8
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Hellemont, R.V., Blomme, T., Van de Peer, Y., and Marchal, K. (2007) Divergence of regulatory sequences in duplicated fish genes. Genome dynamics. 3:81-100
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
1 - 10 of 17
Show