Gene
slc30a9
- ID
- ZDB-GENE-040724-254
- Name
- solute carrier family 30 member 9
- Symbol
- slc30a9 Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 14 Mapping Details/Browsers
- Description
- Predicted to enable zinc ion transmembrane transporter activity. Predicted to be involved in intracellular zinc ion homeostasis; regulation of mitochondrion organization; and zinc ion transport. Predicted to act upstream of or within monoatomic cation transport and transmembrane transport. Predicted to be located in cytoplasmic vesicle and mitochondrial membrane. Predicted to be active in endoplasmic reticulum. Orthologous to human SLC30A9 (solute carrier family 30 member 9).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 4 figures from 4 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:7153183 (1 image)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
No data available
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
Birk-Landau-Perez syndrome | 617595 |
1 - 1 of 1
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Family | IPR002524 | Cation efflux protein |
Family | IPR040177 | Proton-coupled zinc antiporter SLC30A9 |
Homologous_superfamily | IPR009061 | Putative DNA-binding domain superfamily |
Homologous_superfamily | IPR027469 | Cation efflux transmembrane domain superfamily |
Homologous_superfamily | IPR037129 | XPA domain superfamily |
1 - 5 of 5
Domain Details Per Protein
Protein | Additional Resources | Length | Cation efflux protein | Cation efflux transmembrane domain superfamily | Proton-coupled zinc antiporter SLC30A9 | Putative DNA-binding domain superfamily | XPA domain superfamily |
---|---|---|---|---|---|---|---|
UniProtKB:Q5PQZ3 | InterPro | 573 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
aberrant processed transcript |
slc30a9-202
(1)
|
Ensembl | 505 nt | ||
mRNA |
slc30a9-201
(1)
|
Ensembl | 3,259 nt | ||
mRNA |
slc30a9-203
(1)
|
Ensembl | 561 nt | ||
mRNA |
slc30a9-204
(1)
|
Ensembl | 4,912 nt |
1 - 4 of 4
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-240L14 | ||
Contained in | BAC | DKEY-109L4 | ZFIN Curated Data | |
Encodes | EST | IMAGE:7153183 | Thisse et al., 2004 | |
Encodes | cDNA | MGC:92098 |
1 - 4 of 4
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001008575 (1) | 3242 nt | ||
Genomic | GenBank:CT573279 (1) | 264426 nt | ||
Polypeptide | UniProtKB:Q5PQZ3 (1) | 573 aa |
- Kong, N., Zhao, Q., Liu, C., Li, J., Liu, Z., Gao, L., Wang, L., Song, L. (2020) The involvement of zinc transporters in the zinc accumulation in the Pacific oyster Crassostrea gigas. Gene. 750:144759
- Zhao, L., Tan, J., Li, D., Jiang, L., Li, T., Yang, Y., Wang, G., Shang, Z., Wang, J., Zhou, J. (2019) SLC39A6/ZIP6 is essential for zinc homeostasis and T-cell development in zebrafish. Biochemical and Biophysical Research Communications. 511(4):896-902
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Beaver, L.M., Nkrumah-Elie, Y.M., Truong, L., Barton, C.L., Knecht, A.L., Gonnerman, G.D., Wong, C.P., Tanguay, R.L., Ho, E. (2017) Adverse effects of parental zinc deficiency on metal homeostasis and embryonic development in a zebrafish model. The Journal of Nutritional Biochemistry. 43:78-87
- Beaver, L.M., Truong, L., Barton, C.L., Chase, T.T., Gonnerman, G.D., Wong, C.P., Tanguay, R.L., Ho, E. (2017) Combinatorial effects of zinc deficiency and arsenic exposure on zebrafish (Danio rerio) development. PLoS One. 12:e0183831
- Foulkes, M.J., Henry, K.M., Rougeot, J., Hooper-Greenhill, E., Loynes, C.A., Jeffrey, P., Fleming, A., Savage, C.O., Meijer, A.H., Jones, S., Renshaw, S.A. (2017) Expression and regulation of drug transporters in vertebrate neutrophils. Scientific Reports. 7:4967
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Ho, E., Dukovcic, S., Hobson, B., Wong, C.P., Miller, G., Hardin, K., Traber, M.G., and Tanguay, R.L. (2012) Zinc transporter expression in zebrafish (Danio rerio) during development. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP. 155(1):26-32
- Yan, G., Zhang, Y., Yu, J., Yu, Y., Zhang, F., Zhang, Z., Wu, A., Yan, X., Zhou, Y., and Wang, F. (2012) Slc39a7/zip7 Plays a Critical Role in Development and Zinc Homeostasis in Zebrafish. PLoS One. 7(8):e42939
- Kambe, T., Suzuki, T., Nagao, M., and Yamaguchi-Iwai, Y. (2006) Sequence similarity and functional relationship among eukaryotic ZIP and CDF transporters. Genomics, proteomics & bioinformatics. 4(1):1-9
1 - 10 of 12
Show