Gene
idh3b
- ID
- ZDB-GENE-040625-174
- Name
- isocitrate dehydrogenase (NAD(+)) 3 non-catalytic subunit beta
- Symbol
- idh3b Nomenclature History
- Previous Names
-
- zgc:86647
- Type
- protein_coding_gene
- Location
- Chr: 21 Mapping Details/Browsers
- Description
- Predicted to enable NAD binding activity; magnesium ion binding activity; and oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor. Predicted to be involved in isocitrate metabolic process and tricarboxylic acid cycle. Predicted to be active in mitochondrion. Is expressed in several structures, including alar plate midbrain region; digestive system; immature eye; optic tectum; and pronephric duct. Human ortholog(s) of this gene implicated in retinitis pigmentosa 46. Orthologous to human IDH3B (isocitrate dehydrogenase (NAD(+)) 3 non-catalytic subunit beta).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 5 figures from 2 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- IMAGE:6905633 (5 images)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
sa43610 | Allele with one point mutation | Unknown | Splice Site | ENU |
1 - 1 of 1
Show
No data available
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
retinitis pigmentosa 46 | Alliance | Retinitis pigmentosa 46 | 612572 |
1 - 1 of 1
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Isocitrate dehydrogenase NAD-dependent | Isocitrate/isopropylmalate dehydrogenase, conserved site | Isopropylmalate dehydrogenase-like domain |
---|---|---|---|---|---|
UniProtKB:A0A2R8QPC9 | InterPro | 386 | |||
UniProtKB:Q6IQR5 | InterPro | 382 |
1 - 2 of 2
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEYP-87D8 | ||
Contained in | BAC | DKEYP-111B3 | ||
Encodes | EST | IMAGE:6905633 | Thisse et al., 2004 | |
Encodes | cDNA | MGC:86647 | ZFIN Curated Data |
1 - 4 of 4
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_001002157 (1) | 1496 nt | ||
Genomic | GenBank:BX530059 (1) | 179045 nt | ||
Polypeptide | UniProtKB:A0A2R8QPC9 (1) | 386 aa |
- Li, L., Chen, M., Liu, W., Tai, P., Liu, X., Liu, J.X. (2022) Zebrafish cox17 modulates primitive erythropoiesis via regulation of mitochondrial metabolism to facilitate hypoxia tolerance. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 36:e22596
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Yang, B., Zhai, G., Gong, Y., Su, J., Han, D., Yin, Z., and Xie, S. (2017) Depletion of insulin receptors leads to β-cell hyperplasia in zebrafish. Science Bulletin. 62(7):486-492
- Shi, X., He, B.L., Ma, A.C., Guo, Y., Chi, Y., Man, C.H., Zhang, W., Zhang, Y., Wen, Z., Cheng, T., Leung, A.Y. (2015) Functions of idh1 and its mutation in the regulation of developmental hematopoiesis in zebrafish. Blood. 125(19):2974-84
- Sato, Y., Hashiguchi, Y., and Nishida, M. (2009) Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication. BMC Evolutionary Biology. 9:127
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 6 of 6
Show