Gene
vrk1
- ID
- ZDB-GENE-040426-2709
- Name
- VRK serine/threonine kinase 1
- Symbol
- vrk1 Nomenclature History
- Previous Names
-
- wu:fe16f06
- zgc:56266
- Type
- protein_coding_gene
- Location
- Ambiguous Mapping Details/Browsers
- Description
- Predicted to enable protein serine/threonine kinase activity. Acts upstream of or within neural precursor cell proliferation and spermatogenesis. Predicted to be located in Golgi stack. Predicted to be active in cytoplasm and nucleus. Human ortholog(s) of this gene implicated in autosomal recessive distal hereditary motor neuronopathy 10 and pontocerebellar hypoplasia type 1A. Orthologous to human VRK1 (VRK serine/threonine kinase 1).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 2 figures from 2 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- MGC:56266 (1 image)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-vrk1 | (2) | |
MO1-vrk1 | N/A | Apridita Sebastian et al., 2022 |
1 - 2 of 2
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
autosomal recessive distal hereditary motor neuronopathy 10 | Alliance | Neuronopathy, distal hereditary motor, autosomal recessive 10 | 620542 |
pontocerebellar hypoplasia type 1A | Alliance | Pontocerebellar hypoplasia type 1A | 607596 |
1 - 2 of 2
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Active_site | IPR008271 | Serine/threonine-protein kinase, active site |
Binding_site | IPR017441 | Protein kinase, ATP binding site |
Domain | IPR000719 | Protein kinase domain |
Family | IPR050235 | Casein Kinase 1 Ser/Thr Protein Kinase |
Homologous_superfamily | IPR011009 | Protein kinase-like domain superfamily |
1 - 5 of 5
Domain Details Per Protein
Protein | Additional Resources | Length | Casein Kinase 1 Ser/Thr Protein Kinase | Protein kinase, ATP binding site | Protein kinase domain | Protein kinase-like domain superfamily | Serine/threonine-protein kinase, active site |
---|---|---|---|---|---|---|---|
UniProtKB:Q7ZUS1 | InterPro | 425 |
1 - 1 of 1
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-135E15 | ZFIN Curated Data | |
Contained in | Fosmid | CH1073-432E22 | ZFIN Curated Data | |
Encodes | EST | fe16f06 | ZFIN Curated Data | |
Encodes | cDNA | MGC:56266 | ZFIN Curated Data | |
Encodes | cDNA | MGC:174836 | ZFIN Curated Data |
1 - 5 of 5
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_213385 (1) | 1562 nt | ||
Genomic | GenBank:CU467823 (2) | 135288 nt | ||
Polypeptide | UniProtKB:Q7ZUS1 (1) | 425 aa |
Species | Symbol | Chromosome | Accession # | Evidence |
---|---|---|---|---|
Human | VRK1 | 14 | Amino acid sequence comparison (1) |
- Carrasco Apolinario, M.E., Umeda, R., Teranishi, H., Shan, M., Phurpa, ., Sebastian, W.A., Lai, S., Shimizu, N., Shiraishi, H., Shikano, K., Hikida, T., Hanada, T., Ohta, K., Hanada, R. (2023) Behavioral and neurological effects of Vrk1 deficiency in zebrafish. Biochemical and Biophysical Research Communications. 675:101810-18
- Apridita Sebastian, W., Shiraishi, H., Shimizu, N., Umeda, R., Lai, S., Ikeuchi, M., Morisaki, I., Yano, S., Yoshimura, A., Hanada, R., Hanada, T. (2022) Ankle2 deficiency-associated microcephaly and spermatogenesis defects in zebrafish are alleviated by heterozygous deletion of vrk1. Biochemical and Biophysical Research Communications. 624:95-101
- Umeda, R., Teranishi, H., Hada, K., Shimizu, N., Shiraishi, H., Urushibata, H., Shaohong, L., Shide, M., Apolinario, M.E.C., Higa, R., Shikano, K., Shin, T., Mimata, H., Hikida, T., Hanada, T., Hanada, R. (2022) Vrk2 deficiency elicits aggressive behavior in female zebrafish. Genes to cells : devoted to molecular & cellular mechanisms. 27(4):254-265
- Yu, W.X., Li, Y.K., Xu, M.F., Xu, C.J., Chen, J., Wei, Y.L., She, Z.Y. (2022) Kinesin-5 Eg5 is essential for spindle assembly, chromosome stability and organogenesis in development. Cell death discovery. 8:490490
- Can, H., Chanumolu, S.K., Gonzalez-Muñoz, E., Prukudom, S., Otu, H.H., Cibelli, J.B. (2020) Comparative analysis of single-cell transcriptomics in human and Zebrafish oocytes. BMC Genomics. 21:471
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Woods, I.G., Wilson, C., Friedlander, B., Chang, P., Reyes, D.K., Nix, R., Kelly, P.D., Chu, F., Postlethwait, J.H., and Talbot, W.S. (2005) The zebrafish gene map defines ancestral vertebrate chromosomes. Genome research. 15(9):1307-1314
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 8 of 8
Show