Gene
grap2b
- ID
- ZDB-GENE-040426-1485
- Name
- GRB2 related adaptor protein 2b
- Symbol
- grap2b Nomenclature History
- Previous Names
-
- zgc:65942
- Type
- protein_coding_gene
- Location
- Chr: 6 Mapping Details/Browsers
- Description
- Predicted to enable phosphotyrosine residue binding activity. Predicted to be involved in regulation of MAPK cascade and signal transduction. Predicted to be active in cytoplasm; nucleoplasm; and plasma membrane. Human ortholog(s) of this gene implicated in hepatitis C. Orthologous to human GRAP2 (GRB2 related adaptor protein 2).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 1 figure from Zakrzewska et al., 2010
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
No data available
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Grb2-like | SH2 domain | SH2 domain superfamily | SH3 domain | SH3-like domain superfamily |
---|---|---|---|---|---|---|---|
UniProtKB:Q6PE32 | InterPro | 249 |
1 - 1 of 1
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
grap2b-203
(1)
|
Ensembl | 798 nt | ||
mRNA |
grap2b-204
(1)
|
Ensembl | 2,396 nt | ||
mRNA |
grap2b-206
(1)
|
Ensembl | 2,037 nt | ||
mRNA |
grap2b-207
(1)
|
Ensembl | 2,134 nt | ||
ncRNA |
grap2b-002
(1)
|
Ensembl | 721 nt |
1 - 5 of 7 Show all
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | Fosmid | ZFOS-739D3 | ZFIN Curated Data | |
Encodes | cDNA | MGC:65942 | ZFIN Curated Data |
1 - 2 of 2
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_200678 (1) | 2396 nt | ||
Genomic | GenBank:CU659674 (1) | 38006 nt | ||
Polypeptide | UniProtKB:Q6PE32 (1) | 249 aa |
- Stergas, H.R., Dillon-Martin, M., Dumas, C.M., Hansen, N.A., Carasi-Schwartz, F.J., D'Amico, A.R., Finnegan, K.M., Juch, U., Kane, K.R., Kaplan, I.E., Masengarb, M.L., Melero, M.E., Meyer, L.E., Sacher, C.R., Scriven, E.A., Ebert, A.M., Ballif, B.A. (2023) CRK and NCK adaptors may functionally overlap in zebrafish neurodevelopment, as indicated by common binding partners and overlapping expression patterns. FEBS letters. 598(3):302-320
- Demin, K.A., Lakstygal, A.M., Krotova, N.A., Masharsky, A., Tagawa, N., Chernysh, M.V., Ilyin, N.P., Taranov, A.S., Galstyan, D.S., Derzhavina, K.A., Levchenko, N.A., Kolesnikova, T.O., Mor, M.S., Vasyutina, M.L., Efimova, E.V., Katolikova, N., Prjibelski, A.D., Gainetdinov, R.R., de Abreu, M.S., Amstislavskaya, T.G., Strekalova, T., Kalueff, A.V. (2020) Understanding complex dynamics of behavioral, neurochemical and transcriptomic changes induced by prolonged chronic unpredictable stress in zebrafish. Scientific Reports. 10:19981
- Chestnut, B., Sumanas, S. (2019) Zebrafish etv2 knock-in line labels vascular endothelial and blood progenitor cells. Developmental Dynamics : an official publication of the American Association of Anatomists. 249(2):245-261
- Carmona, S.J., Teichmann, S.A., Ferreira, L., Macaulay, I.C., Stubbington, M.J., Cvejic, A., Gfeller, D. (2017) Single-cell transcriptome analysis of fish immune cells provides insight into the evolution of vertebrate immune cell types. Genome research. 27(3):451-461
- Zakrzewska, A., Cui, C., Stockhammer, O.W., Benard, E.L., Spaink, H.P., and Meijer, A.H. (2010) Macrophage-specific gene functions in Spi1-directed innate immunity. Blood. 116(3):e1-e11
- Strausberg,R.L., Feingold,E.A., Grouse,L.H., Derge,J.G., Klausner,R.D., Collins,F.S., Wagner,L., Shenmen,C.M., Schuler,G.D., Altschul,S.F., Zeeberg,B., Buetow,K.H., Schaefer,C.F., Bhat,N.K., Hopkins,R.F., Jordan,H., Moore,T., Max,S.I., Wang,J., Hsieh,F., Diatchenko,L., Marusina,K., Farmer,A.A., Rubin,G.M., Hong,L., Stapleton,M., Soares,M.B., Bonaldo,M.F., Casavant,T.L., Scheetz,T.E., Brownstein,M.J., Usdin,T.B., Toshiyuki,S., Carninci,P., Prange,C., Raha,S.S., Loquellano,N.A., Peters,G.J., Abramson,R.D., Mullahy,S.J., Bosak,S.A., McEwan,P.J., McKernan,K.J., Malek,J.A., Gunaratne,P.H., Richards,S., Worley,K.C., Hale,S., Garcia,A.M., Gay,L.J., Hulyk,S.W., Villalon,D.K., Muzny,D.M., Sodergren,E.J., Lu,X., Gibbs,R.A., Fahey,J., Helton,E., Ketteman,M., Madan,A., Rodrigues,S., Sanchez,A., Whiting,M., Madan,A., Young,A.C., Shevchenko,Y., Bouffard,G.G., Blakesley,R.W., Touchman,J.W., Green,E.D., Dickson,M.C., Rodriguez,A.C., Grimwood,J., Schmutz,J., Myers,R.M., Butterfield,Y.S., Krzywinski,M.I., Skalska,U., Smailus,D.E., Schnerch,A., Schein,J.E., Jones,S.J., and Marra,M.A. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proceedings of the National Academy of Sciences of the United States of America. 99(26):16899-903
1 - 6 of 6
Show