Gene
ankrd6b
- ID
- ZDB-GENE-030916-4
- Name
- ankyrin repeat domain 6b
- Symbol
- ankrd6b Nomenclature History
- Previous Names
- Type
- protein_coding_gene
- Location
- Chr: 20 Mapping Details/Browsers
- Description
- Predicted to contribute to beta-catenin binding activity. Acts upstream of or within several processes, including determination of ventral identity; gastrulation; and regulation of signal transduction. Predicted to be part of beta-catenin destruction complex. Predicted to be active in nucleus. Is expressed in liver. Orthologous to human ANKRD6 (ankyrin repeat domain 6).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 2 figures from 2 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
Phenotype Summary
Mutations
No data available
Targeting Reagent | Created Alleles | Citations |
---|---|---|
MO1-ankrd6b | N/A | (2) |
MO2-ankrd6b | N/A | (2) |
MO3-ankrd6b | N/A | Cui et al., 2011 |
MO4-ankrd6b | N/A | Cui et al., 2011 |
MO5-ankrd6b | N/A | Gonzaga-Jauregui et al., 2015 |
1 - 5 of 5
Show
Human Disease
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Ankyrin repeat | Ankyrin repeat-containing domain superfamily |
---|---|---|---|---|
UniProtKB:F6NJE0 | InterPro | 728 | ||
UniProtKB:A0A8M9P2G9 | InterPro | 750 |
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
ankrd6b-201
(1)
|
Ensembl | 2,761 nt | ||
mRNA |
ankrd6b-203
(1)
|
Ensembl | 2,753 nt | ||
ncRNA |
ankrd6b-002
(1)
|
Ensembl | 598 nt |
Interactions and Pathways
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-181I3 | ZFIN Curated Data |
1 - 1 of 1
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_194423 (1) | 2784 nt | ||
Genomic | GenBank:BX248418 (1) | 152757 nt | ||
Polypeptide | UniProtKB:A0A8M9P2G9 (1) | 750 aa |
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Gonzaga-Jauregui, C., Harel, T., Gambin, T., Kousi, M., Griffin, L.B., Francescatto, L., Ozes, B., Karaca, E., Jhangiani, S.N., Bainbridge, M.N., Lawson, K.S., Pehlivan, D., Okamoto, Y., Withers, M., Mancias, P., Slavotinek, A., Reitnauer, P.J., Goksungur, M.T., Shy, M., Crawford, T.O., Koenig, M., Willer, J., Flores, B.N., Pediaditrakis, I., Us, O., Wiszniewski, W., Parman, Y., Antonellis, A., Muzny, D.M., Baylor-Hopkins Center for Mendelian Genomics, Katsanis, N., Battaloglu, E., Boerwinkle, E., Gibbs, R.A., Lupski, J.R. (2015) Exome Sequence Analysis Suggests that Genetic Burden Contributes to Phenotypic Variability and Complex Neuropathy. Cell Reports. 12(7):1169-83
- Gordon, L.R., Gribble, K.D., Syrett, C.M., and Granato, M. (2012) Initiation of synapse formation by Wnt-induced MuSK endocytosis. Development (Cambridge, England). 139(5):1023-1033
- Cui, S., Capecci, L.M., and Matthews, R.P. (2011) Disruption of planar cell polarity activity leads to developmental biliary defects. Developmental Biology. 351(2):229-241
- Ferrante, M.I., Romio, L., Castro, S., Collins, J.E., Goulding, D.A., Stemple, D.L., Woolf, A.S., and Wilson, S.W. (2009) Convergent Extension Movements and Ciliary Function are Mediated by ofd1, A Zebrafish Orthologue of the Human Oral-Facial-Digital Type 1 Syndrome Gene. Human molecular genetics. 18(2):289-303
- Levi, L., Pekarski, I., Gutman, E., Fortina, P., Hyslop, T., Biran, J., Levavi-Sivan, B., and Lubzens, E. (2009) Revealing genes associated with vitellogenesis in the liver of the zebrafish (Danio rerio) by transcriptome profiling. BMC Genomics. 10:141
- Moeller, H., Jenny, A., Schaeffer, H.J., Schwarz-Romond, T., Mlodzik, M., Hammerschmidt, M., and Birchmeier, W. (2006) Diversin regulates heart formation and gastrulation movements in development. Proceedings of the National Academy of Sciences of the United States of America. 103(43):15900-15905
- Katoh, M., and Katoh, M. (2005) Identification and characterization of rat Ankrd6 gene in silico. International journal of molecular medicine. 15(2):359-363
- Brembeck, F.H., Schwarz-Romond, T., Bakkers, J., Wilhelm, S., Hammerschmidt, M., and Birchmeier, W. (2004) Essential role of BCL9-2 in the switch between β-catenin's adhesive and transcriptional functions. Genes & Development. 18(18):2225-2230
1 - 10 of 11
Show