Gene
anxa11a
- ID
- ZDB-GENE-030707-4
- Name
- annexin A11a
- Symbol
- anxa11a Nomenclature History
- Previous Names
-
- fc09a11
- sb:cb401
- wu:fc09a11
- Type
- protein_coding_gene
- Location
- Chr: 13 Mapping Details/Browsers
- Description
- Predicted to enable calcium-dependent phospholipid binding activity and phosphatidylserine binding activity. Predicted to be involved in cytokinetic process and phagocytosis. Predicted to be active in several cellular components, including nucleus; plasma membrane; and vesicle membrane. Is expressed in several structures, including cardiovascular system; ectoderm; integument; mesoderm; and musculature system. Human ortholog(s) of this gene implicated in amyotrophic lateral sclerosis type 23 and inclusion body myopathy and brain white matter abnormalities. Orthologous to human ANXA11 (annexin A11).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 9 figures from 4 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
-
- cb401 (19 images)
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Allele | Type | Localization | Consequence | Mutagen | Supplier |
---|---|---|---|---|---|
la027390Tg | Transgenic insertion | Unknown | Unknown | DNA | |
sa28085 | Allele with one point mutation | Unknown | Splice Site | ENU | |
sa35446 | Allele with one point mutation | Unknown | Premature Stop | ENU |
1 - 3 of 3
Show
No data available
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
amyotrophic lateral sclerosis type 23 | Alliance | Amyotrophic lateral sclerosis 23 | 617839 |
inclusion body myopathy and brain white matter abnormalities | Alliance | Inclusion body myopathy and brain white matter abnormalities | 619733 |
Domain, Family, and Site Summary
Domain Details Per Protein
Protein | Additional Resources | Length | Annexin | Annexin repeat | Annexin repeat, conserved site | Annexin superfamily |
---|---|---|---|---|---|---|
UniProtKB:B8A4V2 | InterPro | 526 | ||||
UniProtKB:Q7T391 | InterPro | 483 |
Type | Name | Annotation Method | Has Havana Data | Length (nt) | Analysis |
---|---|---|---|---|---|
mRNA |
anxa11a-201
(1)
|
Ensembl | 2,041 nt | ||
mRNA |
anxa11a-202
(1)
|
Ensembl | 2,329 nt | ||
ncRNA |
anxa11a-003
(1)
|
Ensembl | 548 nt |
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | DKEY-48N15 | ZFIN Curated Data | |
Encodes | EST | cb401 | ||
Encodes | EST | fc09a11 | ||
Encodes | cDNA | MGC:64024 | ZFIN Curated Data |
1 - 4 of 4
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:NM_181765 (1) | 2330 nt | ||
Genomic | GenBank:BX323467 (1) | 116326 nt | ||
Polypeptide | UniProtKB:B8A4V2 (1) | 526 aa |
Species | Symbol | Chromosome | Accession # | Evidence |
---|---|---|---|---|
Human | ANXA11 | 10 | Amino acid sequence comparison (1) |
- Silic, M.R., Black, M.M., Zhang, G. (2021) Phylogenetic and developmental analyses indicate complex functions of Calcium-Activated Potassium Channels in zebrafish embryonic development. Developmental Dynamics : an official publication of the American Association of Anatomists. 250(10):1477-1493
- Bayés, À., Collins, M.O., Reig-Viader, R., Gou, G., Goulding, D., Izquierdo, A., Choudhary, J.S., Emes, R.D., Grant, S.G. (2017) Evolution of complexity in the zebrafish synapse proteome. Nature communications. 8:14613
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Saxena, S., Purushothaman, S., Meghah, V., Bhatti, B., Poruri, A., Meena Lakshmi, M.G., Sarath Babu, N., Murthy, C.L., Mandal, K.K., Kumar, A., Idris, M.M. (2016) Role of Annexin gene and its regulation during zebrafish caudal fin regeneration. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society. 24(3):551-9
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
- Varshney, G.K., Lu, J., Gildea, D., Huang, H., Pei, W., Yang, Z., Huang, S.C., Schoenfeld, D.S., Pho, N., Casero, D., Hirase, T., Mosbrook-Davis, D.M., Zhang, S., Jao, L.E., Zhang, B., Woods, I.G., Zimmerman, S., Schier, A.F., Wolfsberg, T., Pellegrini, M., Burgess, S.M., and Lin, S. (2013) A large-scale zebrafish gene knockout resource for the genome-wide study of gene function. Genome research. 23(4):727-735
- Roostalu, U., and Strähle, U. (2012) In Vivo imaging of molecular interactions at damaged sarcolemma. Developmental Cell. 22(3):515-529
- Shkumatava, A., Stark, A., Sive, H., and Bartel, D.P. (2009) Coherent but overlapping expression of microRNAs and their targets during vertebrate development. Genes & Development. 23(4):466-481
- Wang, D., Jao, L.E., Zheng, N., Dolan, K., Ivey, J., Zonies, S., Wu, X., Wu, K., Yang, H., Meng, Q., Zhu, Z., Zhang, B., Lin, S., and Burgess, S.M. (2007) Efficient genome-wide mutagenesis of zebrafish genes by retroviral insertions. Proceedings of the National Academy of Sciences of the United States of America. 104(30):12428-12433
- Farber, S.A., De Rose, R.A., Olson, E.S., and Halpern, M.E. (2003) The zebrafish annexin gene family. Genome research. 13(6):1082-1096
1 - 10 of 11
Show