Gene
chd4b
- ID
- ZDB-GENE-030131-4532
- Name
- chromodomain helicase DNA binding protein 4b
- Symbol
- chd4b Nomenclature History
- Previous Names
-
- si:ch211-57k11.10
- wu:fb44b12
- wu:fd12d03 (1)
- Type
- protein_coding_gene
- Location
- Chr: 16 Mapping Details/Browsers
- Description
- Predicted to enable several functions, including ATP hydrolysis activity; ATP-dependent chromatin remodeler activity; and histone binding activity. Predicted to be involved in chromatin remodeling. Predicted to be part of NuRD complex. Predicted to be active in chromatin and nucleus. Is expressed in blastomere; central nervous system; hematopoietic multipotent progenitor cell; and telencephalon. Human ortholog(s) of this gene implicated in Sifrim-Hitz-Weiss syndrome; colorectal cancer (multiple); lung cancer (multiple); and lymphoma. Orthologous to human CHD4 (chromodomain helicase DNA binding protein 4).
- Genome Resources
- Note
- None
- Comparative Information
-
- All Expression Data
- 6 figures from 5 publications
- Cross-Species Comparison
- High Throughput Data
- Thisse Expression Data
- No data available
Wild Type Expression Summary
- All Phenotype Data
- No data available
- Cross-Species Comparison
- Alliance
Phenotype Summary
Mutations
Targeting Reagent | Created Alleles | Citations |
---|---|---|
CRISPR1-chd4b | Varshney et al., 2015 | |
CRISPR2-chd4b | Varshney et al., 2015 | |
CRISPR3-chd4b | LaCoursiere et al., 2024 | |
CRISPR4-chd4b | LaCoursiere et al., 2024 | |
MO1-chd4b | N/A | (2) |
1 - 5 of 5
Show
Human Disease
Disease Ontology Term | Multi-Species Data | OMIM Term | OMIM Phenotype ID |
---|---|---|---|
Sifrim-Hitz-Weiss syndrome | Alliance | Sifrim-Hitz-Weiss syndrome | 617159 |
Domain, Family, and Site Summary
Type | InterPro ID | Name |
---|---|---|
Conserved_site | IPR002464 | DNA/RNA helicase, ATP-dependent, DEAH-box type, conserved site |
Conserved_site | IPR019786 | Zinc finger, PHD-type, conserved site |
Domain | IPR000330 | SNF2, N-terminal |
Domain | IPR000953 | Chromo/chromo shadow domain |
Domain | IPR001650 | Helicase, C-terminal domain-like |
Domain | IPR001965 | Zinc finger, PHD-type |
Domain | IPR009462 | CHD subfamily II, SANT-like domain |
Domain | IPR009463 | Domain of unknown function DUF1087 |
Domain | IPR012957 | CHD, C-terminal 2 |
Domain | IPR012958 | CHD, N-terminal |
Domain | IPR014001 | Helicase superfamily 1/2, ATP-binding domain |
Domain | IPR019787 | Zinc finger, PHD-finger |
Domain | IPR023780 | Chromo domain |
Domain | IPR049730 | SNF2/RAD5-like, C-terminal helicase domain |
Homologous_superfamily | IPR011011 | Zinc finger, FYVE/PHD-type |
Homologous_superfamily | IPR013083 | Zinc finger, RING/FYVE/PHD-type |
Homologous_superfamily | IPR016197 | Chromo-like domain superfamily |
Homologous_superfamily | IPR027417 | P-loop containing nucleoside triphosphate hydrolase |
Homologous_superfamily | IPR038718 | SNF2-like, N-terminal domain superfamily |
Domain Details Per Protein
Protein | Additional Resources | Length | CHD, C-terminal 2 | CHD, N-terminal | CHD subfamily II, SANT-like domain | Chromo/chromo shadow domain | Chromo domain | Chromo-like domain superfamily | DNA/RNA helicase, ATP-dependent, DEAH-box type, conserved site | Domain of unknown function DUF1087 | Helicase, C-terminal domain-like | Helicase superfamily 1/2, ATP-binding domain | P-loop containing nucleoside triphosphate hydrolase | SNF2-like, N-terminal domain superfamily | SNF2, N-terminal | SNF2/RAD5-like, C-terminal helicase domain | Zinc finger, FYVE/PHD-type | Zinc finger, PHD-finger | Zinc finger, PHD-type | Zinc finger, PHD-type, conserved site | Zinc finger, RING/FYVE/PHD-type |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
UniProtKB:A0A8M9PC64 | InterPro | 1948 | |||||||||||||||||||
UniProtKB:A0A8M9PNR4 | InterPro | 1890 | |||||||||||||||||||
UniProtKB:A0A8M9PDP3 | InterPro | 1949 | |||||||||||||||||||
UniProtKB:A0A8N7T760 | InterPro | 1952 | |||||||||||||||||||
UniProtKB:F1RBT2 | InterPro | 1953 | |||||||||||||||||||
UniProtKB:A0A8M9PN35 | InterPro | 1891 | |||||||||||||||||||
UniProtKB:A0AB32TNF9 | InterPro | 1890 |
Interactions and Pathways
No data available
Plasmids
No data available
No data available
Relationship | Marker Type | Marker | Accession Numbers | Citations |
---|---|---|---|---|
Contained in | BAC | CH211-57K11 | ZFIN Curated Data | |
Encodes | EST | fb44b12 | ZFIN Curated Data | |
Encodes | EST | fd12d03 |
1 - 3 of 3
Show
Type | Accession # | Sequence | Length (nt/aa) | Analysis |
---|---|---|---|---|
RNA | RefSeq:XM_680607 (1) | 7292 nt | ||
Genomic | GenBank:BX511250 (1) | 189081 nt | ||
Polypeptide | UniProtKB:F1RBT2 (1) | 1953 aa |
- LaCoursiere, C.M., Ullmann, J.F.P., Koh, H.Y., Turner, L., Baker, C.M., Robens, B., Shao, W., Rotenberg, A., McGraw, C.M., Poduri, A.H. (2024) Zebrafish models of candidate human epilepsy-associated genes provide evidence of hyperexcitability. iScience. 27:110172110172
- Matrone, G., Jung, S.Y., Choi, J.M., Jain, A., Leung, H.E., Rajapakshe, K., Coarfa, C., Rodor, J., Denvir, M.A., Baker, A.H., Cooke, J.P. (2021) Nuclear S-nitrosylation impacts tissue regeneration in zebrafish. Nature communications. 12:6282
- Ding, Y., Wang, W., Ma, D., Liang, G., Kang, Z., Xue, Y., Zhang, Y., Wang, L., Heng, J., Zhang, Y., Liu, F. (2020) Smarca5 mediated epigenetic programming facilitates fetal HSPC development in vertebrates. Blood. 137(2):190-202
- Sharma, P., Gupta, S., Chaudhary, M., Mitra, S., Chawla, B., Khursheed, M.A., Saran, N.K., Ramachandran, R. (2020) Biphasic Role of Tgf-β Signaling during Müller Glia Reprogramming and Retinal Regeneration in Zebrafish. iScience. 23:100817
- Sharma, P., Gupta, S., Chaudhary, M., Mitra, S., Chawla, B., Khursheed, M.A., Ramachandran, R. (2019) Oct4 mediates Müller glia reprogramming and cell cycle exit during retina regeneration in zebrafish. Life science alliance. 2(5):
- Asad, Z., Pandey, A., Babu, A., Sun, Y., Shevade, K., Kapoor, S., Ullah, I., Ranjan, S., Scaria, V., Bajpai, R., Sachidanandan, C. (2016) Rescue of neural crest derived phenotypes in a zebrafish CHARGE model by sox10 downregulation. Human molecular genetics. 25(16):3539-3554
- Braasch, I., Gehrke, A.R., Smith, J.J., Kawasaki, K., Manousaki, T., Pasquier, J., Amores, A., Desvignes, T., Batzel, P., Catchen, J., Berlin, A.M., Campbell, M.S., Barrell, D., Martin, K.J., Mulley, J.F., Ravi, V., Lee, A.P., Nakamura, T., Chalopin, D., Fan, S., Wcisel, D., Cañestro, C., Sydes, J., Beaudry, F.E., Sun, Y., Hertel, J., Beam, M.J., Fasold, M., Ishiyama, M., Johnson, J., Kehr, S., Lara, M., Letaw, J.H., Litman, G.W., Litman, R.T., Mikami, M., Ota, T., Saha, N.R., Williams, L., Stadler, P.F., Wang, H., Taylor, J.S., Fontenot, Q., Ferrara, A., Searle, S.M., Aken, B., Yandell, M., Schneider, I., Yoder, J.A., Volff, J.N., Meyer, A., Amemiya, C.T., Venkatesh, B., Holland, P.W., Guiguen, Y., Bobe, J., Shubin, N.H., Di Palma, F., Alföldi, J., Lindblad-Toh, K., Postlethwait, J.H. (2016) The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nature Genetics. 48(4):427-37
- Bishop, B., Ho, K.K., Tyler, K., Smith, A., Bonilla, S., Leung, Y.F., Ogas, J. (2015) The chromatin remodeler chd5 is necessary for proper head development during embryogenesis of Danio rerio. Biochimica et biophysica acta. Gene regulatory mechanisms. 1849(8):1040-50
- Diotel, N., Viales, R.R., Armant, O., März, M., Ferg, M., Rastegar, S., Strähle, U. (2015) Comprehensive expression map of transcription regulators in the adult zebrafish telencephalon reveals distinct neurogenic niches. The Journal of comparative neurology. 523(8):1202-21
- Elkon, R., Milon, B., Morrison, L., Shah, M., Vijayakumar, S., Racherla, M., Leitch, C.C., Silipino, L., Hadi, S., Weiss-Gayet, M., Barras, E., Schmid, C.D., Ait-Lounis, A., Barnes, A., Song, Y., Eisenman, D.J., Eliyahu, E., Frolenkov, G.I., Strome, S.E., Durand, B., Zaghloul, N.A., Jones, S.M., Reith, W., Hertzano, R. (2015) RFX transcription factors are essential for hearing in mice. Nature communications. 6:8549
1 - 10 of 14
Show