FIGURE

Fig. 6

ID
ZDB-FIG-220517-33
Publication
Wee et al., 2022 - Social isolation modulates appetite and avoidance behavior via a common oxytocinergic circuit in larval zebrafish
Other Figures
All Figure Page
Back to All Figure Page
Fig. 6

Chemical kin cues modulate OXT neuron nociceptive responses and behavior.

a Top: Schematic showing setup used to probe the effect of conspecific-conditioned water on TRPA1-induced nocifensive behavior. Bottom: Kin water significantly reduced the frequency of large-angle (>50°) but not small- (≤50°) angle tail bends, both after cue delivery and post TRPA1 stimulation, though the overall bout frequency was much higher after TRPA1 stimulation (bottom-most row). Post-cue delivery: p = 0.011* (all bouts)/0.0039** (large angle)/0.93 (small angle). Post TRPA1: p = 0.045* (all bouts)/0.019* (large angle)/0.86 (small angle). There was no significant change in bout kinematics during epochs outside of kin cue or TRPA1 delivery (p = 0.65/0.55/0.71 for total, large, and small tail bends, respectively). One-sided Wilcoxon signed-rank test, n = 16 fish. More kinematic features are shown in Supplementary Fig. 8a. Data are presented as mean values ±SEM. b Top: Alternating pulses of water or conspecific water were presented, followed by a 100-ms pulse of UV light after 30 s to activate TRPA1 receptors. Half of the fish had kin water as the first stimulus. Bottom: Stimulus-triggered averages for OXTPO (n = 492) or OXTPT (n = 8) neuron calcium activity (Δf/f) in response to a water pulse or kin water delivery. The integrated Δf/f of OXTPO neurons both post cue delivery (***p = 2.6 × 10−12) and post TRPA1 stimulus (*p = 0.026) was significantly lower after kin water as compared with water flow. There was no significant effect of kin water on OXTPT neuron activity both post cue delivery (p = 1) and post TRPA1 stimulus (p = 1), two-sided Wilcoxon signed-rank test. Black horizontal line shows the region over which the pre- and post TRPA1 calcium activity and behavior were averaged to calculate precue, post-cue, and post TRPA1 responses. Gray dashed line = water or kin water delivery, purple dashed line = UV stimulus onset, Shading indicates SEM. c Calcium traces (Δf/f) and the respective stimulus and motor regressors (see Results and Methods), as well as their correlation coefficients with each regressor are shown for two example OXTPO neurons. d K-means clustering (k = 12) was performed on the matrix of correlation coefficients to each of the stimulus or motor regressors (n = 500 units from 16 fish). Number of units within each cluster and percentage representation of total units are displayed on the right. Clusters specific to TRPA1 stimulation, as well as motor-correlated clusters were observed. We grouped these clusters into broader classes and subclasses (i–v), which are indicated by the black lines and boxes. See also Supplementary Fig. 8c, d. e The percentage of OXTPO/PT neurons within each cluster that were suppressed, activated, or did not show any change when exposed to kin water, either following cue delivery (left) or TRPA1 stimulation (right). Red = enhancement, Blue = suppression, White = no change. The broader classes (i–v) are indicated by black boxes. See also Supplementary Fig. 8d. f Mean stimulus-triggered calcium responses (Δf/f) of all OXTPO/PT neurons in the presence of water (black) or kin water (orange), as a function of their class/subclass. Note scale bar for class ia is different from the others due to the intensity of TRPA1 responses. For class ib, the integrated calcium response both post cue delivery (**p = 0.003) and post TRPA1 stimulus (***p = 2.0 × 10−5) was significantly lower in the presence of kin water as compared with water flow. For class iia–b, the integrated calcium response post cue delivery (**p = 0.0013 or ***p = 7.6 × 10−7) was significantly lower with kin water as compared with water flow, but the response to TRPA1 stimulus was not significantly lower (p = 1 or p = 0.06, respectively), two-sided Wilcoxon signed-rank test, n = 16/126/40/47/109/64/64/34 neurons (ia, ib, ic, iia, iib, iii, iv, and v, respectively). Source data are provided as a Source Data file.

Expression Data

Expression Detail
Antibody Labeling
Phenotype Data

Phenotype Detail
Acknowledgments
This image is the copyrighted work of the attributed author or publisher, and ZFIN has permission only to display this image to its users. Additional permissions should be obtained from the applicable author or publisher of the image. Full text @ Nat. Commun.